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Abstract: It is shown that the postulate of a space-time continuum is not a logical necessity, since it is possible 
to construct a theory, where the ultimate limit for the smallest measurable distance a is finite. This quantum of 
length is a universal constant, like the light velocity c and Planck’s constant h. The generalized theory implies 
that the total energy content of our Universe Eu = hc/2a and that velocities v > c are possible for material bodies, 
when their energy is approaching Eu. That’s surprising, but there are no logical inconsistencies. On the contrary, 
this theory removes a basic contradiction between relativity and quantum mechanics: the EPR paradox. It 
accounts also for the mysterious “internal degrees of freedom” of elementary particles, by relating them to 
possible results of space-time measurements, when the quantum of length a is finite.   
 
 

Introduction 
 

Physics is a science, where one tries to acquire more knowledge about the structure and 
properties of reality at the most profound, accessible level. Occasionally, physics is a more 
philosophical endeavor, since it is also searching for deeper insight in the essence or actual 
meaning of this knowledge. In classical physics, it was believed, indeed, that physical laws 
are direct statements about reality, but it appears now that they are statements concerning the 
knowledge we can get about reality. That’s very different, since this knowledge results from 
measurements that are themselves subjected to restrictions.  

Albert Einstein initiated this epistemological revolution in 1905, by constructing the theory 
of special relativity. He did this for purely logical reasons, since he had recognized that 
Maxwell’s theory of electromagnetism and Newtonian mechanics were fundamentally 
incompatible with one another. One theory implied that the velocity of light in vacuum should 
have the same value c for all directions and all inertial reference frames, independently of 
their relative motions, but this was strictly forbidden by the other theory. Einstein removed 
this paradox, through a simple, but radical change of the previous concepts of space and time. 
He considered space and time as being defined by possible results of measurements. These 
measurements are subjected, however, to a very precise and completely unexpected condition. 
The outcome of any measurement of space and time intervals in inertial reference frames has 
to be such that when we measure the distance traveled by a light pulse in vacuum during a 
measured time interval, this has always to yield the same value c.  

To understand the importance of this assertion, we have to consider previous ideas about 
space and time and to explain what is meant by “inertial reference frames”. We will also 
stress the fact that Einstein’s concept of physical laws did influence the development of 
quantum mechanics. Actually, we can say that this theory takes into account an other 
restriction that Nature imposes on certain measurements, and that these restrictions are also 
related to the existence of a universal constant: Planck’s constant h.  

These facts suggest that Nature could impose a third restriction. Perhaps, we are not aware 
of it, since the usual assumption yields a sufficiently good approximation. Nevertheless, we 
could be victims of an illusion, when we postulate that this assumption has to be correct under 
all circumstances. Does there exist a basic assumption that could be false? Yes, present-day 
theories presuppose that there exists a “space-time continuum” or more precisely, that it 
should be possible to measure always smaller and smaller intervals of space and time, without 
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any finite limit. Since this couldn’t be experimentally verified, we don’t really know if this is 
true or not, but we have the impression and are conditioned to think that space and time are 
continuous. We simply extrapolate what is known to be true for relatively small intervals of 
space and time, by assuming that this should also be true for arbitrarily small intervals. 
Actually, we can’t be sure that nothing else could occur at some very small scale.  

How could we find out? The old algebraic method consists in giving a name to what is 
unknown and to express its properties by means of an equation. Implicit information can then 
be made explicit, by purely logical transformations. Let’s consider an ultimate limit for the 
smallest measurable distance and call it “a”. We will treat it as a yet unknown quantity, but 
we can postulate that it has to be a universal constant, like c and h. The question is then: is it 
possible to construct a theory that takes into account the constants c, h and a, without ending 
up with logical contradictions when a is finite?   

The generalized theory has to reduce to the usual one when a = 0, but we want to know if 
the continuum assumption is a logical necessity or not. The method, which consists in 
constructing a more general theory and to test its logical acceptability has already been used 
for Euclid’s postulate about parallel lines. As soon as an acceptable “non-Euclidean 
geometry” had been constructed, it was clear that it is not necessary to assume that through a 
point outside a given line, one can draw one and only one parallel line that will never cut the 
first one. But after that, it took still many years to change the older, deeply rooted ideas.  

Psychosocial problems do also arise when one has to abandon the familiar concept of a 
space-time continuum. The logical possibility and most important physical consequences of 
space-time quantization were established already in the sixties1. Since we continued to 
investigate this problem, other results and ideas were added, but they encountered significant 
resistance. It may thus be adequate to summarize the results that have been obtained so far 
and to stress the fact that the underlying principles are very simple and natural extensions of 
the general trend of the evolution of physics.   

 
 

Changing concepts of space and time 
 

The first intuitive ideas about space and time were based on daily experience, as well in 
our own childhood as for mankind. We see that the position of a material object can change in 
the course of time and we realize very soon that this object can’t disappear somewhere, to 
reappear somewhere else. Material bodies have a continual existence. We are also able to 
imagine extremely small particles and we can even reduce material objects in our mind to 
single points, but we will then assume that such a point-like particle has to move along a well-
defined trajectory. Moreover, it couldn’t move from a given point A to another point B, 
without passing through a continuous sequence of intermediate points, because of its 
continual existence. We postulate therefore that the trajectory has to be a continuous line. 
That’s the intuitive justification of the concept of a space-time continuum. 

Analogies and linguistic tools did also shape our first ideas about space and time. We say, 
indeed, that objects are moving in space, as they do in air or water. This conveys the feeling 
that space could be some kind of substance. We say that time is flowing, since we can 
measure passing time, by considering the amount of water or sand that is steadily flowing out 
of a vessel through a small opening. The clepsydra was such an instrument, but we can also 
measure time by means of a clock that reproduces always the same unit of time. Thus, we do 

                                                
1 A. Meessen: Sur le problème de la quantification de l’espace-temps, Ann. Soc. Sc. Bruxelles, 81, 254-271 
(1967).  
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represent different instants t by different points on a single time-axis and these points are 
assumed to form a continuum.  

While time has only one dimension, space is three-dimensional. This means that it is 
possible to choose three reference axes, allowing for independent distance measurements. The 
common origin, the directions and orientations of the reference axes can be chosen in a 
completely arbitrary way, but they should form three different planes. If they were coplanar, 
they wouldn’t allow for independent distance measurements. This results from the fact that 
we are free to measure the lengths of two sides of a triangle, but the length of the third side 
can then be calculated. It is already determined and doesn’t have to be measured. It is not 
necessary that the spatial reference axes are perpendicular to one another, but once we have 
chosen them, as well as a time measuring system, we can say that space and time are defined 
by the possible values of four measurable quantities: x, y, z and t. That’s not sufficient, 
however, to determine the properties of space and time. Since they can’t be directly 
perceived, we have to make assumptions and to check their validity.  

Aristotle imagined that space is an ensemble of points, forming a continuum, but he 
postulated that one of these points has a special status. It seemed, indeed, that all stars are 
moving together, as if they were fixed on the surface of a sphere, rotating around an axis that 
passes through the center of the Earth. This led to the idea that the center of the Earth 
coincides with the center of the Universe. Because of its distinguished position, this point 
would then have no reason to move in whatever direction. The center of Earth should thus be 
absolutely motionless. The idea that the center of the Earth occupies a privileged position in 
space seemed to be confirmed by the fact that heavy bodies are freely falling along vertical 
lines. All these lines are passing through the center of the Earth.  

Aristotelian physics was apparently based on good observations and a secure induction, but  
Nicolas de Cusa and Giordano Bruno questioned the concept of a limited Universe, while 
Copernicus and Kepler centered the Universe on the Sun. This was already quite revolu-
tionary, but Galileo recognized that a much more profound revision of Aristotelian physics 
was actually required. This theory implied, indeed, that any object that is motionless with 
respect to the center of the Earth is in a state of absolute rest. Motion seemed thus to be 
comparable to life: a being is living or not. We are still saying that objects can be “animated” 
by motions, and a terrestrial object tends to loose its motion. That means that the velocity v = 
0 with respect to the center of the Earth seemed to have a special status. Galileo saw that this 
couldn’t be true, since velocities can be added to one another by changing the reference 
frame. All velocities are relative. They depend on the chosen reference frame. 

Galileo formulated even the principle of relativity and the principle of inertia, but since he 
tried always to justify his propositions in terms of experimental observations, he considered 
only what happens for bodies near the surface of the Earth. The principle of relativity states 
that a physical law is a relation that is independent of the chosen reference frame, while the 
principle of inertia requires that the velocity of a material body remains constant (whether it is 
zero or not) as long as this body is not perturbed by some applied force. 

Newton adopted a broader view, encompassing heavenly motions as well as terrestrial 
ones. The principle of inertia required then that the acceleration is zero, when the applied 
force is zero, but this can only be true for a particular set of reference frames, the so-called 
“inertial reference frames”. They are not accelerated relative to one another, and they are 
physically distinguished with respect to other frames, since they are the only ones where the 
acceleration of any material body is zero when the applied force is zero. Here, we consider 
“true forces”. They do not only appear as causes of acceleration, but do also result from real 
physical interactions with other bodies. The existence of such a privileged set of reference 
frame was very astonishing, since the principle of inertia should be valid for all material 
bodies and all types of forces, always and everywhere in the whole Universe. 
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 Newton tried to justify this, by postulating that there exists everywhere a point that is in a 
state of absolute rest. The ensemble of these points would constitute “absolute space”. 
Inertial reference frames were then those frames that are not accelerated with respect to 
absolute space. To define the acceleration, it seemed necessary to assume also the existence of 
“absolute time”, flowing always and everywhere in exactly the same way.  

Some physicists thought that absolute space could be materialized by the ether, which had 
been considered already during Greek Antiquity, since it seemed difficult to accept the 
existence of “nothingness”, even at places where there is no matter at all. Maxwell used this 
concept to develop a theory that accounted for all known facts concerning electricity and 
magnetism, by assuming that electric and magnetic fields correspond to modifications of this 
ether. This led to logically consistent equations, predicting the existence of electromagnetic 
waves. They would always propagate in vacuum (thought to be pure ether) at a well-defined 
velocity c. Its value was determined by electrical and magnetic measurements, but was also 
equal to the measured value of the velocity of light in vacuum. Light could thus be considered 
as a particular type of electromagnetic waves. 

That was a beautiful theory, but Einstein saw that it led to a fundamental problem. The 
principle of relativity would require that the velocity c is a universal constant for all inertial 
reference frames, while Newton’s theory did not allow for such a velocity. Einstein showed 
that this problem could be solved, by abandoning the concept of absolute space and time. We 
shouldn’t consider space and time any more as some kind of physical reality, but define space 
and time by possible results of measurements. They allow us to specify the space-time 
coordinates (x, y, z, t) of any given event in a given reference frame. When these 
measurements are performed in another reference frame for the same event, we get different 
results: (x’, y’, z’, t’). Einstein postulated, that for inertial reference frames, these results are 
related to one another in such a way that a measurement of the velocity of light in vacuum 
yields always the same value c.  

This idea changed physics in a very profound way, since it indicated for the fist time that 
physical laws should only be considered as statements concerning the knowledge we can get 
about reality. As we mentioned in the introduction, quantum mechanics did confirm this rule, 
but even today, this is not always emphasized.  

Let’s recall that Planck had shown (in 1900) that certain properties of electromagnetic 
radiation inside a hot cavity could be explained, by assuming that the energy of a light wave 
can only be increased or decreased by finite quantities. They are equal to hν, for waves of 
given frequency ν, while h is now called “Planck’s constant”. Einstein was much bolder, 
since he proposed (in 1905) to consider that any light-wave is equivalent to an ensemble of 
particles, each one of them carrying an energy E and a momentum p, defined by 

 
E = hν          and          p = h/λ                                               (1) 

 
where ν is the frequency and λ the wavelength of the light-wave. This was partly an 
application of the theory of relativity, since this theory predicted that for a given inertial 
frame, the energy E and momentum p of a freely moving particle should be such that  

 
(E/c)2 = p2 + (moc)2                                                     (2) 

 
The momentum p = mv, where v is the velocity of the particle, while m has the dimension 

of a mass. When the particle is at rest (p = 0), the energy E = moc2. That a material particle 
contains a certain amount of energy, because of its rest mass mo, was completely unknown in 
classical mechanics. This shows already that the restrictions that Nature imposes on our 
measurements can actually lead to more detailed knowledge.  Moreover, we end up with a 
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greater unity of physics, since it follows from (2) that E/c = p, when mo = 0. This is 
compatible with (1), since for electromagnetic waves in vacuum, λ = cT, where the period of 
oscillation T = 1/ν. Thus, light is composed of particles and all particles obey Einstein’s 
relation (2).  

Niels Bohr tried (in 1913) to understand atomic spectra. He assumed that electrons are 
moving inside an atom along well-defined trajectories and that only some of these trajectories 
are allowed, to account for “quantization rules” that could be deduced from empirical facts.  
These rules involved Planck’s constant h. Although they could be justified by known 
phenomenology, they were very mysterious. It was thus quite remarkable that Louis de 
Broglie could justify their existence (in 1924), by assuming that a material particle is always 
accompanied by an “associated wave”. Its properties should be defined by (1). This postulate 
did also increase the unity of physics, since the relations (1) would not only apply to photons, 
but also to material particles. Erwin Schrödinger established then (in 1926) a wave equation 
and solved it for bound particles, while Max Born treated (also in 1926) the problem of 
scattering, where a collision can send a given particle in many different directions. This led to 
the probabilistic interpretation of the quantum-mechanical wave function.  

In the meantime, Werner Heisenberg had already formulated quantum-mechanical laws by 
following a completely different road. He questioned the concept of well-defined trajectories 
for atomic electrons, since they presuppose that it should be possible to get an absolutely 
precise knowledge about the position and velocity of an electron at any particular instant. 
According to his understanding of Einstein’s theory of relativity, physical laws should only 
express relations between possible results of measurement. The positions and velocities of 
atomic electrons should thus not be defined by extrapolating daily experience, but in terms of 
possible spectroscopic observations. Heisenberg expressed this knowledge by means of an 
ensemble of numbers and described (already in 1925) the motions of atomic electrons by 
means of a “matrix mechanics” that was more abstract, but equivalent to “wave mechanics”.  

Heisenberg formulated then (in 1927) his famous “uncertainty relations”. Actually, he 
followed up his initial idea, but expressed it now in terms of the Einstein - de Broglie relations 
(1). They imply that E and p are only sharply defined, when the wave function oscillates 
always at the same frequency ν and everywhere with the same wavelength λ. This is usually 
not true, since the wave is only oscillating within a limited region of space and time, but the 
values of p and E are then not known with absolute precision. The uncertainties are ∆p > h/∆x 
and ∆E > h/∆t, where ∆x and ∆t are the allowed uncertainties in space and time.  

Heisenberg took great care to present these theoretical relations, as consequences of the 
process of measurement. For instance, when one knows exactly the direction of motion of a 
particle and when one determines then its position, by means of a slit of width ∆x, one looses 
the previous knowledge, because of diffraction processes. We will end up with an uncertainty 
∆p > h/∆x in the direction of the x-axis, although before this measurement, ∆p was zero. This 
fact has often been interpreted - too narrowly - as meaning that the observing subject perturbs 
the object he wants to study. It is more appropriate to say that “Nature imposes restrictions on 
our measurements” and that they are related to the existence of universal constants. In this 
case, it is Planck’s constant h. It has the same value for all directions and all inertial reference 
frames, like the light velocity c.  

This parallelism is of fundamental importance, but it wasn’t even obvious for Einstein. In a 
private discussion with Heisenberg (that took place already in 1924) he said2: “You are 
talking about what we know about Nature and not about what Nature is really doing”. Why 
was Einstein so reticent? As a student, he had been impressed by Ernst Mach’s criticism of 
classical mechanics, but later, he rejected the extreme and sometimes blind positivistic 

                                                
2 W. Heisenberg : Der Teil und das Ganze, Piper & Co,1963, dtv, 1973, p. 85 



 

 

6

philosophy3. Heisenberg’s intuition was fruitful and basically correct. We will thus go one 
step further in the same direction.   

 
 

The basic postulate of space-time quantization 
 

When there exists a finite limit for the smallest measurable distance, it is meaningless to 
formulate a physical law that would tell us what happens at a smaller scale, since physical 
laws should be verifiable, at least in principle. Our usual theories imply, however, that 
physical laws can be expressed by means of differential equations, assumed to be valid for 
infinitely small intervals of space and time. Perhaps, they are only approximations that cease 
to be valid at some extremely small scale. The laws of classical mechanics were very good for 
a certain domain, but they had to be replaced by those of relativistic mechanics and quantum 
mechanics for larger domains. 

To set up the more general laws that take into account the existence of a finite limit a for 
the smallest measurable distance, we have to proceed very carefully, since we enter in 
unknown territory. What can be safely assumed? Past experience tells us that a has to be a 
universal constant, like c and h. Distance measurements could then be performed, in 
principle, by successive juxtapositions of the same smallest measurable length. This yields the 
basic postulate of the generalized theory:   

 
An ideally exact distance measurement along any direction 

in any inertial reference frame can only yield integer multiples 
of the same universally constant quantum of length a. 

 
Let us chose an x-axis that has a given direction, orientation and origin. When we measure 

the coordinate x along this direction, by starting at the origin x = 0, as we normally do, the 
only possible values of x are x = 0, ±a, ±2a, ±3a, … The coordinate x is quantized, so that the 
smallest possible difference between two possible values of x is equal to a. Usually, we don’t 
perform ideally exact measurements. There remains then some uncertainty about the possible 
values. This uncertainty can be determined, as well as the average (or most probable) value. 
Even when x is quantized, the average value is not quantized. It results indeed from an 
explicit or implicit calculation, based on the probability distribution for different possible 
results. Usually, we are talking about the average position of a particle, and this is a 
continuous variable, even when space is quantized.  

When we perform ideally precise measurements of all (x,y,z,ct) space-time coordinates by 
starting at the origin of the chosen inertial reference frame, we can only get integer multiples 
of a for everyone of these coordinates. This yields a “space-time lattice” that depends on the 
chosen origin and the chosen directions of the reference axes, but the lattice constant a is 
always the same.  

To find out if the laws of relativistic quantum mechanics can be generalized, to account for 
c, h and a, we have to recall what is essential in the usual continuum theory. Einstein showed 
that the laws of classical mechanics have to be modified in such a way that the energy E and 
momentum p of a freely moving particle are related to one another by means of (2). Since a 
free particle is unperturbed by external forces, neither its direction of motion, nor the values 
of p and E can change in the course of time. We can thus choose the direction of motion of the 
particle as the direction of the x-axis. The possible positions of the particle will then be 

                                                
3 P. Frank: Einstein, Mach, and logical positivism, in Albert Einstein: Philosopher-Scientist, P.A. Schilpp 
(editor), Vol. I, 1949. p. 271-286. 
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determined by the corresponding value of x. This applies as well to an idealized point-particle 
as to the center of mass (or center of gravity) of an extended body.  

In classical or relativistic mechanics, we describe the motion of this particle, by assuming 
that it has a well-defined position at any particular instant t, whether we know this position or 
not. The rate of variation of this position during a very small time interval (dx/dt) defines then 
the instantaneous velocity v. The quantum-mechanical description of motions is radically 
different, since we consider the propagation of a “wave”, but this is a mental construction, 
synthesizing all the knowledge we can get about the particle. To be more precise, we will say 
that to any particular point P in space and time (where the particle could be found in the 
chosen reference frame), we associate a ψ-vector that is contained in a complex plane. In 
shorthand notation: ψ = Aeiϕ. This means simply that A is the amplitude of the ψ-vector, as 
indicated in figure 1, while ϕ is an angle that defines its orientation with respect to the so-
called imaginary axis. Usually, we assume that x and ct can have any values, but the same 
concepts remain valid when x and ct are quantized. Instead of a space-time continuum, we get 
then a space-time lattice for the chosen reference frame.  

 
 

 ψ 

A 
ϕ 

P 

ct 

x 0 
 

 
Figure 1. In quantum mechanics, we define the knowledge we can get about a particle, 

at any point P of space and time where it could be localized, by a ψ-vector in an abstract plane 
 
 

The square of A yields the probability to find the particle at the point P. Since A can vary 
for different points P, we get in general, a probability distribution in space and time. The 
angle ϕ can also vary, but the rate of variation of ϕ yields information about the state of 
motion of the particle. When the particle has a sharply defined energy E and a sharply defined 
momentum p, the ψ-vector has always and everywhere the same amplitude A, but it rotates 
with a well-defined angular velocity along the x-axis and the ct-axis. Mathematically, it is 
sufficient to say that ϕ = k.x-ω.t, where k = 2π/λ and ω = 2πν. The older relations (1) acquire 
now a new meaning. Actually, they define new measurable properties.  

In the usual theory, the coordinate x is a continuous variable. Since ψ contains the factor 
eikx, the first and second order partial derivatives with respect to x are given by 

 
ψ−=ψ∂ψ=ψ∂ 22

xx kandik                                   (3) 
 
The first expression defines the local slope (or rate of variation) of the ψ function along the 

x-axis. It is equal to ∆ψ/∆x, where ∆ψ is the change of ψ when x is increased by ∆x, where 
∆x is very small. The second expression defines the local curvature (or rate of variation of the 
slope). The minus sign arises from the fact that i2 = -1. From a mathematical point of view, it 
is assumed that we can go over to the limit where the interval ∆x becomes infinitely small 
(can be reduced more and more, without ever reaching any finite limit). But from a physical 
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point of view, it is sufficient that the interval ∆x is small enough, to insure that the result 
doesn’t change when the size of the interval ∆x undergoes further reductions.  

When there exists a finite quantum of length a, we have to replace the partial derivatives 
(3) by finite differences, but before we do that, we have to call attention on a very important 
fact, usually buried under a layer of formalistic jargon. First of all, we recall that the relations 
(3) were obtained by considering a ψ functions that contains the factor eikx, where k is 
constant. This means that the momentum p = h/λ = hk is sharply defined (with h = h/2π). 
There is no uncertainty at all, but this is not always true. In general, ψ does not vary 
everywhere with some particular wavelength λ, but we can use the same relations (3) to 
define “local values” of the momentum p. When the local values are different at different 
places, there will exist some uncertainty about the actual value of p.  

The definition of p, which is used in classical mechanics, corresponds only to the average 
value of the quantum-mechanically defined values of p. Quantum mechanics yields thus a 
much more detailed description than the classical one. Actually, we can deduce everything we 
want to know about the possible positions x and the possible momenta p of the particle, by 
inspecting its ψ function. This is also true for the time variable t and the energy E = hω, since  

 
ωψ−=ψ∂ it  

 
The time t can be measured, in principle, by considering the distance ct that a light pulse 

would travel during the time t. The foregoing expression can thus be rewritten by considering 
the partial derivative with respect to ct, but ω has then to be divided by c. Now, comes the 
essential step to get a physical law. In relativistic quantum mechanics, we postulate that 
Einstein’s relation (2) is still valid for the local values of E and p. It follows that the ψ 
function for a free particle in a given inertial reference frame has to satisfy the differential 
equation 

 
ψ=ψ∂−ψ∂ 22

ct
2
x K                                                         (4) 

 
where K = moc/h. This is the famous “Gordon-Klein equation”. It accounts for the existence 
of two universal constants, c and h. We have to generalize this equation, when the smallest 
measurable distance is finite. To do that, we will define the local value of k and p at the 
smallest possible scale, by means the following expression:  

 

)x(
)2/a(

)2/ka(sin
a

)x(2)ax()ax(D 2

2

2
2
x ψ−=

ψ−−ψ++ψ
=ψ                     (5) 

 
This defines the curvature at the point x and is a generalization of the second order partial 

derivative (3) when a is finite. The last expression in (5) is obtained when ψ varies like eikx, 
but we can use this expression for any function ψ, to define the local value of k. When we 
replace the partial derivatives in (4) by corresponding finite differences, we get instead of 
Einstein’s relation (2), the generalized energy-momentum relation 

 
)h/cam(sin)h/ap(sin)hc/aE(sin o

222 π+π=π                                    (6) 
 
This is a new physical law. It tells us how the energy E depends on the momentum p for 

any free particle of given rest-mass mo in any (arbitrarily chosen) inertial reference frame, 
whether a = 0 or not. The last term is a constant, depending on the rest mass mo. It is 
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expressed here in such a way that we get always E = moc2 when p = 0. Einstein’s relation (2) 
is a particular case (where a = 0) or an approximation that is even valid when space and time 
are quantized, as long as the arguments of the sine functions in (6) are sufficiently small. This 
will be true for relatively small values of E, p and moc. For large values, there will be 
differences.  

 
 

Surprising, but logically consistent results 
 

We left the value of the quantum of length a completely undetermined, since we wanted to 
avoid any arbitrariness. It is possible to get a universally constant length, by combining c and 
h with the gravitational constant G, for instance. This yields the Planck length (10-35 m). It can 
be expected to play an important role in “quantum gravity” and thus for the physics of black 
holes4, but we are looking for general physical laws that are valid everywhere in the whole 
universe, even when there is no gravitational field at all. The generalized energy-momentum 
relation (6) does actually apply to free particles.  

The prominent feature of this relation is that the sine functions lead to a periodic structure 
of the energy-momentum space. The possible values of p that give rise to different states of 
motion are thus contained in a domain that is centered on p = 0, but is limited by ±h/2a. Since 
this is also true for E/c, there exists an upper limit for the highest possible energy. This is the 
total energy content of our Universe: 

 
Eu = hc/2a 

 
No particle could ever have a higher energy, when this energy is finite1. It follows that 

there is also a limit for the highest possible rest energy Eo = moc2. It is reached when the last 
term of (6) is equal to 1, but for real (measurable) values of E and p, there exists then only one 
possible state of motion: absolute rest (p = 0), while E = Eu. This provides a new definition for 
inertial reference frames. As Newton suspected it is related to something that is in a state of 
absolute rest, but this is not “absolute space”. We can say that if a material body would have a 
rest energy that is equal to the total energy content of our Universe, there would be no energy 
left that could appear in the form of kinetic energy. This body would thus have to be in a state 
of absolute rest. The continuum assumption (a = 0) and Einstein’s relation (2) are equivalent 
to the (arbitrary) postulate that the total energy content of our Universe should be infinite. 
Inertial reference frames remain then intrinsically undefined. 

For photons (mo = 0), the generalized energy-momentum relation (6) allows for E/c = p 
even if their energy E would be very close to Eu. For material particles, there are differences 
with respect to the usual continuum theory when their energy E is approaching Eu. This can be 
expressed most clearly by considering their velocity v. Let’s recall that in quantum 
mechanics, a particle is localized in space and time to a certain extend, when the associated 
wave function vanishes outside a limited domain. This can be viewed as resulting from an 
interference effect, when one considers a superposition of waves that are characterized by 
different, but nearly identical values of k. The group velocity of such a “wave-packet” defines 
the classical velocity or quantum-mechanical average velocity.  Its value v = dω/dk = dE/dp. 
The generalized energy-momentum relation (6) leads now to the astonishing conclusion that 
the velocity v can be larger than c, when the energy of a material particle is approaching the 
value of Eu. Actually, it is necessary that E > Eu/2.  

                                                
4 L. Smolin,  Atoms of space and time, Scient. Amer. 290, Jan. 56-65 (2004). 
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This effect is unimportant for any practical purposes (like space-travel, for instance), but it 
is essential as a matter of principles, since the familiar statement that velocities v > c are 
forbidden is only true when a = 0.  We can even show5 that it is necessary that a is not zero, 
to insure the internal coherence of physics. To stress the importance of this fact, we recall that 
Einstein had discovered that Maxwell’s theory of electromagnetism and Newtonian 
mechanics are not really compatible with one another. Einstein created the theory of relativity 
to restore harmony, but he discovered also that quantum mechanics and relativity don’t really 
fit together.  

Quantum mechanics implies, indeed, that we can consider a system that is composed of 
two particles, so that a measurement performed on one particle will instantly provide 
information about the other particle, however far it may be from the first one. This should be 
impossible, according to relativity. Einstein concluded therefore that quantum mechanics does 
not provide a complete description of reality. This statement has often been interpreted as 
unwillingness or incapacity to accept quantum-mechanical principles, and in particular its 
probabilistic interpretation, but Einstein had the courage to repeat until his death that he did 
not consider quantum mechanics as the ultimate truth. Space-time quantization yields a more 
general theoretical framework and resolves the EPR paradox6.  

This paradox results from the conviction that one measurement can only influence the 
outcome of another measurement, far away, when there exists some (causal) physical 
interaction. Today, we attribute such an interaction to an exchange of virtual particles, 
existing only during very short time intervals. Because of Heisenberg’s uncertainty relations, 
they can thus have extremely high energies, and this is now compatible with superluminal 
velocities. They are not strictly forbidden anymore, when a is finite. Space-time quantization 
is thus not only logically possible, but removes even a logical contradiction that subsisted in 
the usual theory.   

Superluminal velocities could be important for the initial, inflationary expansion of our 
Universe, but it is then necessary to include gravitational effects. This requires a modifiable 
metric of space and time. The quantum of length is then not a universal constant any more5. 
Some effects of quantum gravity can probably be treated at a larger scale, in terms of Planck’s 
length. This leads to a foamy structure of space and time, where surfaces are quantized in 
terms of the square of the Planck length4. Similar ideas had been expressed already at a much 
earlier stage7. It should be noted that the walls of these bubbles would have a continuous 
structure, while we are considering a lattice for the possible results of space-time coordinates, 
and this lattice is independent of the gravitational constant G.  

 Although the generalized energy-momentum relation (6) applies to free particles, it allows 
us to predict what happens when a material particle is subjected to a force. We know, indeed, 
that the group velocity v = v(p,mo) can be deduced from (6), since v = dE/dp. We can thus 
calculate the acceleration dv/dt when the value of F = dp/dt is known. We get then5 a 
generalization of Newton’s law of motion, dv/dt = F/m, where F defines the magnitude of the 
applied force, while m is the “inertial mass”, which depends in a specific way on the velocity 
v, even when v > c. It is also possible to treat the case of motions along any direction with 
respect to the chosen spatial reference axes5.  

The objection that space-time quantization would be incompatible with the Lorentz 
transformation for space-time coordinates is not valid. It results from the antiquated concept 

                                                
5 A. Meessen: Spacetime quantization, elementary particles and cosmology, Foundations of Physics 29, 281-317 
(2000) and  http://www.meessen.net/AMeessen/STQ/STQ.pdf 
6 A. Einstein, B. Podolsky and N. Rosen:  Can quantum-mechanical description of physical reality be considered 
complete? Phys. Rev. 47, 777-780 (1935). 
7 B. Heim: Vorschlag eines Weges zur einheitlichen Beschreibung der Elementarteilchen, Z. f. Naturforschung, 
32a, 233-243 (1977).  



 

 

11

of absolute space and time, suggesting that there should exist a unique space-time lattice or at 
least, that the result of an ideally precise measurement performed in one frame has to coincide 
with the result of an ideally precise measurement performed in any other frame. That’s not 
necessary, according to general quantum mechanical principles. We insisted therefore already 
at the outset on the fact the space-time quantization is not concerned with an intrinsic 
structure of space and time, but with possible results of measurement. They depend on the 
chosen experimental set-up and in different reference frames, we are performing independent 
measurements. It is necessary, however, that the form of the energy momentum-relation (6) is 
preserved for all inertial frames. This calls simply for a generalized Lorentz transformation8.   

Since Heisenberg had considered the possible existence of an elementary length9, we 
submitted in 1973 all our published papers and the projected paper about relativistic 
invariance8 to his scrutiny. He had no objection, but advised to search for applications that can 
establish contact with experimental results. The privileged field for such an attempt could be 
elementary particle physics, since we know that there are various types of elementary 
particles, with properties, like color, strangeness, charm or beauty, and corresponding 
quantum numbers, but we don’t understand their physical origin. Stationary energy levels are 
characterized in atomic, molecular and nuclear physics by specific spectroscopies, but they 
can always be explained in terms of quantum-mechanical laws. The “new spectroscopy” of 
elementary particle physics indicates the existence of a deeper-lying level of reality. It has to 
be governed by rational laws, but quantum mechanics alone doesn’t give access to this terra 
incognita. Why do elementary particles have “internal degrees of freedom” that can’t be 
explained by the usual theory? Does this result from the continuum assumption? Could a 
finite value of the smallest measurable distance (a) provide an explanation?   

We tried to answer this question by following Dirac’s procedure. When he replaced the 
Gordon-Klein equation (4) by an equivalent set of first order differential equations, he 
discovered already some internal degrees of freedom (spin-up and spin-down, as well as 
particle and antiparticle states for electrons and similar particles). When we did this for the 
corresponding finite difference equation, we found new internal degrees of freedom10, but it 
took some time to discover their profound meaning and a simpler approach5.  

 
 

Generalized space-time quantization and elementary particles 
 

Let’s reconsider the measurement of the coordinate x in a given inertial reference frame. 
We can freely choose the direction, the orientation and the origin of the x-axis. Once this is 
done, an ideally precise measurement of the position of a point-particle will yield a particular 
value “x”, but we can immediately assert that “-x” is also a possible result. The orientation of 
the x-axis has been chosen in a completely arbitrary way, indeed, so that spatial symmetry has 
to be insured. Since the distance 2x between x and -x has to be measurable, 2x = Na, where N 
is an integer number. Thus x = Na/2, but N can be an even or an odd number. As indicated in 
figure 2, this yields two possible spectra: x = 0, ±a, ±2a, ±3a, ... or  x = ±a/2, ±3a/2, ±5a/2… 

                                                
8 A. Meessen: Spacetime quantization, generalized relativistic mechanics and Mach’s principle: Foundations of 
Phys. 8, 399-415 (1978) 
9 W. Heisenberg : Über die in der Theorie der Elementarteilchen auftretende universelle Länge, Ann. Phys. 32, 
20 (1938), Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie, Z. Phys. 110, 251 (1938). Quantum 
theory of fields and elementary particles, Rev. Mod. Phys. 29, 269 (1957).   
10 A.Meessen : Quantification de l’espace-temps et généralisation de l’équation de Dirac, Ann. Soc. Sc. 
Bruxelles,  84, 267-275 (1970), Quantification de l’espace-temps et généralisation de l’équation de Dirac: 
interprétation du degré de liberté additionnel, ibida, 85, 204 (1971), A finite difference Schrödinger equation, 
ibida, 86, 89-100 (1972), 88, 71 (1974), 
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Figure 2: Ideally exact measurements of the coordinate x yield two different spectra of possible values. 
 
 

This twofold quantization is valid for all (x,y,z,ct) reference axes. There are thus several 
space-time lattices of lattice constant a. The “normal lattice” contains the origin of the 
chosen reference frame, but there are “inserted lattices”, displaced by a/2 along one or more 
reference axes. The usual ψ function, defined on a space-time continuum, should now be 
replaced by a ψ function that is defined on all these lattices. Nevertheless, we can consider ψ 
functions that are respectively defined on the normal lattice and on inserted lattices. For every 
one of these lattices, the possible variations of ψ functions are described at the smallest 
possible scale by second order finite differences, like (5). Since they require only that we 
consider intervals that are equal to a, we get the same energy-momentum relation (6) for 
everyone of these space-time lattices.  

We can say that E and p define “external degree of freedom”, allowing us to distinguish 
different states of motion from one another for any type of particles, but we are looking for 
“internal degrees of freedom” that would allow us to distinguish different types of particles 
from one another. This is possible when we consider the ensemble of ψ functions that are 
defined on different space-time lattices of lattice constant a. Figure 3 represents what happens 
along the x-axis. The left part shows how the probability to find the particle at any particular 
point varies progressively along the x-axis. This probability has to vary in such a way that a 
smooth transition to the usual continuum approximation is possible.  

Since the probability is equal to the square of the amplitude A of the ψ-vector, it follows 
that the orientation of the ψ-vectors could be inversed on the inserted lattice with respect to 
the normal lattice, as indicated in the right part of figure 3 for a particular point of the inserted 
lattice. The progressive variation of the phase angle ϕ of the ψ-vectors defines the state of 
motion. It is specified by the variables p and E, but this doesn’t exclude that the angle ϕ can 
be increased or decreased everywhere on the inserted lattice with respect to the normal lattice 
by an integer multiple of 180°.  

 
 

ϕ 
A 

ψ  

x 

Probability 

0 
 

Figure 3: A smooth variation of the probability to find a particle at different points x allows for a discrete 
difference between the phase angles ϕ on the inserted lattice with respect to the normal lattice. 

 
 
The angle ϕ = kx +… (where the other terms depend on y, z and ct), but kx will be 

increased everywhere on the inserted lattice with respect to the normal lattice by u times 180°, 
where u = 0, ±1, ±2, ±3,... This results from the fact that the generalized energy-momentum 
relation (6) contains sine functions5, but the essential point is that the quantum number u 
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defines a previously unknown internal degree of freedom. Positive or negative values of u 
correspond to rotations of the ψ-vector towards the left or the right. The value of u is 
completely independent of the value of k and thus of the momentum p along the x-axis.  

This reasoning applies to all space-time coordinates (x,y,z,ct) in any particular, but 
arbitrarily chosen inertial reference frame. We get thus a set of four new quantum numbers: 
(ux,uy,uz,uct). Independently from one another, they can have the values 0, +1 or –1, for 
instance. Different combinations of these values will then define different types of elementary 
particles or possible “particle states”. Since a truly elementary particle cannot have any 
constitutive parts, it is a single point, but even point-particles can be distinguished from one 
another, since the associated ψ-vectors can vary in space and time according to different 
patterns.  We couldn’t be aware of these features as long as we believed that space-time is 
continuous. The actual size of a is irrelevant. It is only necessary that a is not zero.  

Does this picture really account for known facts? “Ordinary matter” is the stuff we are 
made of and that constitutes all material things around us, up to extremely far galaxies. The 
corresponding elementary particles are represented in figure 4 by lattice points in a three-
dimensional space, where the (ux,uy,uz) quantum numbers can be equal to 0, ±1, while uct = 0. 
We can chose three orthogonal base-vectors, to get a lattice of cubic symmetry, and we can 
choose a particular order for the names we assign to these axes. Since this order is arbitrary, it 
is obvious that we should consider the average value 

 
Q = (ux+uy+uz)/3 

 
Q defines the electric charge, expressed in terms of the quantum of charge e. This can also 

be justified by generalizing the theory of electromagnetic interactions5. 
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Figure 4: Elementary particles of ordinary matter are represented by points, defined by three quantum 
numbers (ux,uy,uz) that can have the values 0, +1 or –1. Quarks and antiquarks correspond to 

the edges of the triangles, which are equilateral when seen along the Q axis. 
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The electron e- corresponds to (ux,uy,uz) = (-1,-1,-1) and the positron e+ to (1,1,1). The 

electron neutrino νe and its anti-particle are both characterized by (0,0,0), with Q = 0. There 
are two different types of quarks. The up-quark has three possible states: (0,1,1), (1,0,1) or 
(1,1,0), represented by points that are situated at the edges of the upper triangle. The resulting 
charge is Q = +2/3. The down-quark d has also three possible states: (-1,0,0), (0,-1,0) and 
(0,0,-1), with Q = -1/3. Although the naming of the (ux,uy,uz) reference axes is arbitrary, we 
can distinguish three different states for up- and down quarks. By analogy with the three 
fundamental colors for human color vision, they are called red, green and blue (R, G, B) 
colors states. The sign of all u values is reversed for antiparticles. This changes the sign of Q, 
but also the color states. Anti-quarks have anti-colors. 

This appears more clearly when we look at the triangles along the Q axis. As shown by the 
insert of figure 4, we get then two superposed equilateral triangles for the u and d quarks, and 
two centrally symmetric triangles for their antiparticles. It has been experimentally proven 
that u and d quarks can only have three different color states. This is now a consequence of 
the fact that space is three-dimensional, and provides a strong argument in favor of the 
proposed theory. We can also understand why nucleons and similar particles contain three 
quarks with different colors. The three spatial dimensions are physically equivalent. 

So far, we considered only a group of particles, characterized by uct = 0. There are two 
other generations, with an identical internal structure, resulting from the (ux,uy,uz) quantum 
numbers, but they are characterized by uct = ±1 instead of uct = 0. They are known to exist, but 
they had to be created by means of energetic particle collisions. In figure 4, we have then to 
replace the e± particles by a τ± or µ± particles, while the up and down quarks are respectively 
replaced by charmed and strange quarks or top and bottom quarks.  

 
 

Fermions, bosons and new particles 
 

All elementary particles of figure 4 and the analogous particles with uct =  ±1, are spin 1/2 
particles. The spin is very similar to a classically known property, the angular momentum 
vector, but in quantum mechanics, it describes the symmetry of the ψ function around a given 
spatial axis. This could be done already in the continuum approximation, and explains why 
the spin of a particle is independent of the values of the (ux,uy,uz,uct) quantum numbers. 
Particles that have a half-integer spin (1/2, 3/2,…) are called fermions, while particles of 
integer spin (0, 1,…) are bosons. Particle states of fermions and bosons will respectively be 
designated by (ux,uy,uz,uct) and [ux,uy,uz,uct]. Since all known spin 1 particles correspond to uct 
= 0, they can simply be characterized by [ux,uy,uz] with the previous definition of Q.  

Photons correspond to [0,0,0]. They can exist as real particles and are responsible for 
electromagnetic interactions, resulting from an exchange of virtual photons. Weak 
interactions are due to an exchange of W± and Z weakons. They are respectively characterized 
by [1,1,1], [-1,-1,-1] and [0,0,0]. Only points that are situated on the Q axis will represent 
these particles. In figure 4, the e± particles would thus be replaced by the W± bosons, but in 
the theory of electro-weak interactions, they are considered together with photons and Z  
particles.    

Strong interactions are mediated by virtual gluons. They are electrically neutral but are 
characterized by [0,1,-1] and permutations of these quantum numbers. This allows for 6 
colored quarks, characterized by a color and an anti-color. We can thus get, for instance, the 
following transformation: a red u-quark is annihilated, to create a green u-quark and a red-
anti-green gluon (R = G + ).GR  Since the ux, uy and uz quantum numbers are separately 
conserved, this process can also be represented by (0,1,1) = (1,0,1) + [-1,1,0].  
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There are also )BB(and)GG(),RR(  states, corresponding to [0,0,0], but one considers 
only two independent mixtures of these states. The resulting 8 different types of gluons would 
be presented in a figure that is analogous to figure 4, by points that are situated in a plane that 
is perpendicular to the Q-axis, at Q = 0. The colored gluons would then be situated at the 
edges of a hexagon and the color-neutral gluons at its center.  

Now it becomes obvious that we can expect the existence of other types of elementary 
particles. There should exist spin 1 bosons that are analogous to quarks and spin 1/2 fermions 
that are analogous to gluons, as well as other particles, with higher values of the u quantum 
numbers. This opens the road to new physics, beyond the “standard model”, without 
postulating the existence of additional dimensions, as required by string theories. There are 
six particle states of type (0,1,-1), with possible permutations of these quantum numbers. 
They can’t exist in isolation, but can form composite particles. Since they are electrically 
neutral and analogous to quarks, we propose to call them “narks”.  The resulting composite 
(spin ½) particles are called “neutralons”, since they are analogous to nucleons.  

Previously5, we wanted to minimize the number of new particles, but in addition to the 6 
colored narks, it is advantageous to consider also BBandGG,RR narks, corresponding to 
[0,0,0]. Various types of narks can then be bound together by exchanging gluons, but 
statistically, all colors have to be present in equal proportions. This allows for the formation 
of neutralons, containing 1, 3, 5 or 7 narks. They are fermions like ordinary matter particles, 
but one can also get (spin 0 or spin 1) bosons.  

Perhaps, we have already evidence concerning the existence of neutralons, since we know 
that our Universe contains huge amounts of “dark matter”. This substance is composed of 
particles that are electrically neutral, but they have some mass, since they are subjected to 
gravitational effects. The actual mass of the individual particles is not yet known, but they 
have to be considered as remnants of the initial big bang. Neutralons are good candidates to 
account for dark matter. It is possible that their rest mass requires more energy for their 
creation than was available until now, but the Large Hadron Collider (LHC) could eventually 
produce this type of particles. Space-time quantization is thus experimentally verifiable. 

 
 

Conclusions 
 

It is logically possible and physically useful to generalize relativistic quantum mechanics, 
by considering the possible existence of a finite limit a for the smallest measurable distance.   
This quantum of length has to be a universal constant for all directions and all inertial 
reference frames, like c and h. The actual value of a remains unknown, but it is determined by 
the total energy content of our Universe, Eu = hc/2a. The usual continuum theories imply that 
the energy E of a particle could reach infinite values, but this is not necessarily true. On a 
purely logical level, there exists a strong indication that the quantum of length should be 
finite, since that would solve the EPR paradox. This is related to the fact that superluminal 
velocities are not forbidden anymore when the smallest measurable distance a is not 0. We 
also get then a better definition of inertial reference frames.  

The generalized theory contains three universal constants: c, h and a. They define natural 
units for length, time and mass (or energy) measurements, so that these observables are now 
defined without any ambiguity for the whole Universe. The constants c, h and a are associated 
with three different types of restrictions that Nature imposes on our measurements. These 
restrictions have to be taken into account in physical laws, but we don’t know why the 
constants c, h and a do have the particular values we observe in our Universe.  
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Because of the restrictions that Nature imposes on our measurements, it is now obvious 
that physical laws are statements concerning the knowledge we can get about reality. It is also 
important to note that these restrictions allow us to get more detailed knowledge. This 
appeared already through the fact that the theory of relativity disclosed the existence of a rest 
energy moc2 for any material particle of given rest mass mo. In quantum mechanics, we 
express the knowledge we can get about a particle by means of ψ-vectors. They provide an 
extraordinarily flexible epistemological tool. It allows us to calculate the probability to find 
the particle at any particular point in space and time, but also to get detailed probabilistic 
information about the possible states of motion (external degrees of freedom).  

It is even possible, when a is not 0, to distinguish different types of particles from one 
another by means of different patters of variation of the ψ-vectors in space and time (internal 
degrees of freedom). These features are characterized by four new quantum numbers, 
(ux,uy,uz,uct) that can have positive or negative integer values. The resulting scheme for the 
classification of elementary particle states accounts for all known particles and predicts the 
existence of other elementary particles. One type of these particles could constitute dark 
matter, known to exist in our Universe in much greater proportions than ordinary matter.  

Although it may be difficult to abandon the familiar concept of a space-time continuum, 
the basic assumptions are in line with the general trend of the evolution of physics. Einstein 
insisted11 on the “essentially constructive and speculative nature of thought and more 
especially of scientific thought”. For physical theories, the “naturalness” or “logical 
simplicity“ of the premises is very important, as well as the “inner perfection” of all these 
theories. We applied these rules to establish the foundations of space-time quantization, to test 
its logical consistency and to show that it has the advantage of removing a severe 
contradiction that subsisted between relativity and quantum mechanics.  

The “external confirmation” is essential, of course, since physical theories should not only 
to be correct, but also true. This means that they have to be in conformity with observed facts. 
Their objective is, indeed, to describe what actually happens or could happen in Nature. In 
regard to the creation of a new theory, Einstein warned however against “the prejudice… that 
facts by themselves can and should yield scientific knowledge without free conceptual 
construction”. The development of space-time quantization was mainly motivated by a search 
of greater harmony between various ideas and facts that constitute the basic tissue of physics.  

It is very astonishing that the concept of a finite limit for the smallest measurable distance 
seems to provide the key for understanding the existence of different types of elementary 
particles. It is particularly amazing that all fundamental building block of reality can be 
viewed as different kinds of excitations of space and time. The Universe we are living in 
becomes more understandable, but at the same time we have to agree with Einstein, who 
said12: “The most incomprehensible thing about the world is that it is comprehensible”. Why 
is there such a highly remarkable rationality? Where does it come from?   

  

                                                
11 A. Einstein : Autobiographical Notes, in Albert Einstein : Philosopher-Scientist  P.A. Schilpp (editor) Vol I, 
1959, p. 21, 23 and 49.  
12 A. Einstein : On physical reality, Franklin Institute Journal , 221, 349, 1936.  


