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The introduction o f an “elementary length" a representing the ultimate limit 
for the smallest measurable distance leads to a generalization o f Einstein's 
energy-momentum relation and o f the usual Lorentz transformation. The 
value o f  a is left unspecified, but is found to be equal to hc/2Eu , where Eu 
is the total energy content o f our universe. Particles o f zero rest mass can only 
move at the velocity c o f light in vacuum, while material bodies can move 
slower or faster than light, when a ^ O , without violating the principle of 
causality. The laws o f relativistic mechanics are actually generalized so that 
they include Mach's principle, since it is found that the universe as a whole 
can only be in a state o f rest for any particular inertial observer.

1. INTRODUCTION

Through the development of the theory of relativity and of quantum 
mechanics, we have learned that nature can impose some particular restric­
tions on our measurements, and that these restrictions are expressed by the 
existence of universal constants: the velocity of light in vacuum c and Planck’s 
constant h. We should thus be prepared to consider also the possible existence 
of other restrictions, and in particular of an ultimate limit for the smallest 
measurable distance. The value a of this “elementary length” should actually 
be considered as an unknown quantity, while the usual theories are based on 
the implicit assumption that a =  0. These theories could correspond, indeed, 
to an approximation of a more general theory, including three finite, universal 
constants: c, h, and a.

It has been suggested quite often that there could exist a universal 
elementary length, corresponding to some combination of known universal 
constants, including, for instance, the electron charge e, the gravitational
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constant G, or the rest mass of some particular elementary particle. But we 
can only use the argument that the elementary length should be the smallest 
measurable distance. This leads directly to a relation between the value of a 
and the total energy content of our universe Eu .

A measurement of very small distances has to be performed, indeed, 
through some kind of scattering experiment. This means that the smallest 
measurable distance has to be of the order of the smallest possible wave­
length À. This value depends on the largest possible momentum, according 
to de Broglie’s relation p =  h/X. But, to achieve the largest possible value of 
p, we have to use a massless particle of highest possible energy, so that 
p = E/c. Since it is absolutely impossible to consider a particle of higher 
energy than the total energy content of our universe Eu , we see that

a ~  hc\Eu (1)

Nobody knows for sure if Eu is infinite. Many cosmological models are 
actually compatible with a finite value for Eu , and therefore with a finite 
value for a. We should thus try to find out if it is at least possible to construct 
a logically consistent theory that would take into account the restrictions 
imposed by the existence of an ultimate limit for the smallest measurable 
length, whatever its value may be.

Pauli(1) was convinced that “the spacetime is in need of a fundamental 
revision in the domain of very small dimensions.” Nevertheless, he thought 
that it is not licit to introduce an elementary length, corresponding to a 
“cutoff” in the spectrum of possible wavelengths, for reasons of relativistic 
invariance. On the one hand, it would be necessary, indeed, to expect a 
universally constant value for this length, while this seems to be forbidden 
as a consequence of the Lorentz transformation for spacetime intervals.

This difficulty can be overcome, however, as will be shown in this 
article. The Lorentz transformation for the spacetime coordinates follows, 
indeed, from the requirement of relativistic invariance of some differential 
equations, like the Klein-Gordon equation. But these equations imply 
already the assumption that a =  0 , since it would be physically meaningless 
to specify the variations of some function over space intervals that are 
smaller than a, or time intervals that are smaller than ajc when a =£ 0. This 
follows from the requirement that any physical law should be experimentally 
verifiable, at least in principle. We should thus start with a generalization of 
the usual laws, replacing all differential equations by finite-difference equations 
for the variation of any function in space and time. The relativistic invariance 
of this theory allowing now for a 0 should then be verified in a second step.
Instead of using the usual Lorentz transformation to reject the possible 
existence of a finite elementary length, we use then the concept of such a 
length to show that the usual Lorentz transformation can be generalized.
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2. LAWS OF MOTION FOR A PARTICULAR INERTIAL REFERENCE 
FRAME

2.1. Basic Assumptions

I. The origin and the orientation of the spatial reference axes can be 
chosen arbitrarily. This depends only on our chosen experimental setup for 
measuring coordinates.

II. An ideally exact measurement of the values of the spacetime 
coordinates could be performed in principle by a juxtaposition of smallest 
measurable distances along the chosen reference axes. This means that the 
eigenvalues of the spacetime coordinates (x , y, z, ct) correspond to a space- 
time lattice of lattice constant a, depending on the chosen frame of reference.

III. Any field that is associated with a given kind of particle can only 
be defined on the spacetime lattice points where a particle could be observed 
with some given probability. This is true even for macroscopic bodies, as 
soon as we define some particular point attached to this body, like its center 
of mass, to localize it exactly.

IV. The variation of the fields in space and time have to be specified 
by finite-difference equations obtained by generalizing the usual differential 
equations through the following correspondence principle for second partial 
derivatives:

V/W «  V/W  = /(* + «> +/(» -  "> -  y w  (2)

We have chosen this rule, since it is the simplest one, resulting from the fact 
that we can only consider intervals Ax that are integer multiples of the quan­
tum of length a. It is interesting to note that Heisenberg(2) used a similar 
correspondence principle for the initial formulation of quantum mechanics. 
The derivative Vi = dE/dJ.\ had to be replaced, indeed, by a finite derivative, 
since the energy E is a function of action integrals , which are quantized, 
so that AJi is always an integer multiple of Planck’s constant h.

The concept of a spacetime quantization and of finite-difference 
equations instead of the usual differential equations has been considered 
already by Ambarzumian and Iwanenko(3) and Ruark.(4) Meessen(5) used the 
correspondence principle given above to get a generalized Klein-Gordon 
equation, leading to a modification of Einstein’s energy-momentum relation. 
The internal consistency of such a theory was checked(6) by considering the 
limiting case where c =  oo, since three different definitions of the average 
velocity of a particle should then yield equivalent expressions. The concept of 
field quantization can also be extended,(7) as well as Dirac’s equation, which 
leads to the appearance of new degrees of freedom.(8)
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2.2. Generalization of Einstein’s Energy-Momentum Relation

The possible states of motion of a free particle of given rest mass m0 in 
a particular inertial reference frame are defined by the possible values of the 
energy-momentum variables (E/c,px ,p y ,p z). Einstein showed that these 
values are connected by the following equation:

(Ejcf -  Y ,  P i  =  (moc)2 (3)
i

De Broglie discovered, on the other hand, that we can associate a plane wave

y , z, ct) = A exp[i(kxx  +  kyy +  kzz — cot)] (4)

to any particle of well-defined energy and well-defined momentum by means 
of the relations

E = hco and pt =  hki (5)

where i =  x, y, z. The energy-momentum relation (3) is then interpreted as 
a dispersion relation, resulting from the fact that ifs has to verify the Klein- 
Gordon equation

(Z d i -  8 ct) 4> =  (m 0c l h f  ip (6)
x i

With the correspondence principle (2), we now get the “generalized Klein- 
Gordon Klein”

(Z  D? -  D l) if) =  (m.cfKf 4) (7)
i

This equation is still satisfied by functions of the form (4), although we 
consider the spacetime coordinates as being quantized in terms of the elemen­
tary length a. But we get now the generalized energy-momentum relation

sin2(£a/2/zc) — ^  sin2(/?*a/2/z) =  (m0ca/2fi)2 (8)

This relation reduces to (3) when a =  0 or when E/c, pt , and m0c k/a. 
The periodicity of the energy momentum relation allows us to restrict our 
considerations to the first Brillouin zone, where

—irhla <  E/c9pX9py ,p z <  + 7rh/a

All other (real) values of the energy-momentum variables would not only 
reproduce the same relation (8), but also the same values for the amplitude 
of the function (4) on the chosen spacetime lattice. The variation of this
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function between the lattice points is indeed irrelevant, as it is well known for 
the analogous behavior of sound waves in a crystal.

2.3. The Largest Possible Rest Mass

Requiring that the values of the energy-momentum variables should be 
real, it follows from (8) that m0 can take any value between 0 and M = 
Ihjca. A body whose rest mass would be equal to M  could only be in a state 
of rest (pi =  0), while its energy would have the largest possible value, 
defined by

E\c =  irh\a or E = Eu = he\2a

We have to interpret the energy Eu as being equal to the total energy content 
of our universe, since a body of such a large rest mass that its rest-energy 
would be equal to the total energy content of our universe would necessarily 
have to be at rest. There is indeed no energy that is left over and that could 
appear in the form of kinetic energy for such a body. The essential content of 
the generalized energy-momentum relation (8) corresponds thus to the fact 
that our usual laws have certainly to be modified in the domain of extremely 
high energies comparable to the total energy content of our universe when 
this energy Eu oo.

2.4. Generalization of Newton’s Second Law of Motion

The idea of a spacetime lattice was actually introduced in 1870, by 
Clifford,(9) who questioned the belief that there has necessarily to exist a 
spacetime continuum, by imagining “discontinuous motions.” This means 
that all particles were supposed to “jump” from one lattice point to another 
lattice point. This model shows that the concepts of a spacetime continuum 
is actually derived from the concept of continuous existence of a moving 
particle. In order to get from one point to another point, it is then necessary, 
indeed, that the particle passes through a continuous sequence of inter­
mediate points.

It is not very convincing, of course, to require a discontinous existence 
of moving particles. But this is not necessary, when we take into account the 
probabilistic interpretation of quantum mechanical wave functions. We have 
merely to consider the motion of a wave packet, defining a progressively 
changing probability distribution for the particle on various spacetime 
lattice points.

The deterministic classical motion then corresponds to the average 
motion of the particle, in the quantum mechanical sense, even when the 
spacetime coordinates are quantized. Since the wave packet is formed by a
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superposition of plane waves of type (4), with a given distribution for the 
possible values of the momentum components p t , we can define the average 
motion by considering the point where all components are in phase. The 
resulting expression for the components of the average velocity of the particle 
corresponds thus to the usual definition of the group velocity:

Vi = dœ/dki = dE/dpi (9)

The values of the derivatives have to be taken for the average values of the 
momentum components, which will be simply designated by p i . It should be 
noted that the average position of the particle can be situated between the 
lattice points, since it is defined by a calculation and not by a direct, single 
measurement.

The function vt =  vi(p1, p2, p3) allows us to predict the components of 
the acceleration of the particle when the momentum components vary with 
time:

al = * i = Y ,  (dvildPi)Pi =  X (&EldPi dPi)Pi
3 3

We assume here that the variations are sufficiently slow, so that we make no 
appreciable error by considering ordinary time derivatives, represented by 
dots. This leads to a generalization of Newton’s law of motion:

at =  E  Filmu (10)
3

Fj = pj and 1/ra^- =  d2E/dpi dp0 (11)

The acceleration is thus determined by an external factor (F0) and an internal 
factor (rriij). The relations (9)-(ll) reduce to the usual laws of special relati­
vity when we make use of Einstein’s energy-momentum relation (3). It is 
necessary, of course, to distinguish the (scalar) momentum mass m = pjvi 
from the inertial mass tensor, which implies the existence of a transverse and 
a longitudinal mass with respect to the direction of motion of the particle.

«

2.5. Generalization of Relativistic Mechanics

We have now to consider the physical meaning of the relations (8)-(ll) , 
which take into account the existence of the constants c, h, and a. To see 
more clearly the new features, we restrict our considerations to a particle 
moving along one of the chosen reference axes. This allows us to set p = p x 
with pv = pz = 0 , while (8) reduces to

sin2 (Eajlhc) — sin2 (pa/lh) =  (m0cal2fi)2 (12)
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Fig. 1. Graphical representation of the generalized energy- 
momentum relation in the first Brillouin zone for different 
values of the rest mass (x =  m0cal2h).

This corresponds to a “deformed hyperbola” that is “cut off” at the boundary 
of the first Brillouin zone, so that | E/c | and \p \ < 7rh/a, as indicated in 
Fig. 1. The extended zone scheme would correspond to a juxtaposition of 
“tiles” bearing the drawing of Fig. 1. The solid lines in Fig. 1 correspond to 
possible states of motion of material bodies of various rest masses. For small 
values of m0 the curve approaches the straight lines, which represent the 
energy-momentum relation E2 =  c2p2 for a particle of zero rest mass. For 
large values of m0 the curve shrinks toward the limiting points E/c = ±h/2a 
and p = 0. We mentioned that the upper point corresponds to the only 
state of motion of the universe as a whole. Negative energy states only have 
a meaning, of course, in Dirac’s hole theory.

The energy-momentum relation for a material body of given rest mass 
m0 =£ 0 is redrawn in Fig. 2a for the upper right quarter of the first Brillouin 
zone, with an indication of Newton’s classical approximation (C) and 
Einstein’s relativistic approximation (R). In Fig. 2a we represent the cor­
responding variations of the velocity v = v(p). This curve cuts the level 
v = c at a finite value for p , corresponding to an energy E >  EJ2. Beyond
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Fig. 2. (a) Variation of the
energy E  vs. momentum p  for 
a particle of given rest mass in 
the upper quadrant of the first 
Brillouin zone. The classical 
and relativistic approximations 
are represented by the curves 
labeled C and R. (b) Variation 
of the (average) velocity v 
vs. (average) momentum p.
(c) Variation of the longi- 

« tudinal inertial mass m vs. 
momentum p.

this point the curve increases again more and more rapidly, so that v -> oo 
when E-+ Eu . This is only true, however, for ordinary material bodies. 
When m0 =  0, we get v = c for any value of p. For m0 = M  = Ihjca, the 
velocity v cannot be defined any more, but we can speak of a state of absolute 
rest, since p =  0.

Figure 2c represents the variation of the longitudinal inertial rest mass 
m = m(p). We see that oo when v c, as in special relativity, but it is
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now possible to reach ultra-light velocities (v >  c). The inertial mass de­
creases when v —>■ oo. The “light barrier” cannot be overcome, however, by 
accelerating a particle through a continuous application of a given force, 
since the acceleration a -^  0 when v —* c. It is only possible to “jump over 
this barrier” by means of a quantum mechanical transition where the energy 
is suddenly increased or decreased, for instance, by the absorption or emission 
of photons.

The conclusion that a material body can move faster than light when one 
does not assume a priori that a = 0 is at least of considerable importance for 
a better understanding of the special theory of relativity. This theory is only 
based, indeed, on the requirement that the velocity of light in vacuum should 
be a universal constant and does not basically impose a limit for the highest 
possible velocity of any material body. It should also be noted that the 
present theory implies that the universe cannot be composed of matter and 
antimatter in a symmetric way, so that the total amount of energy in our 
universe would be zero. Although it is possible to create antimatter by 
exciting particles from negative to positive energy states, there exists only a 
total excitation energy equal to Eu .

The analytical relation for v = v(p) can be obtained immediately by 
derivation of (10). This leads to

(v/c) sin(Ea/ftc) =  sin(pajh) (13)

showing that v =  c when E = cp, while the “frontier” where material bodies 
are passing from infra-light velocities to ultra-light velocities is defined by the 
condition

Ea _  pa
He ~ 7T~  a or 2?

c
rrh
a P (14)

which is represented by the second diagonal in Fig. 2a. Deriving (13) with 
respect to p , we get a relation for the inertial mass m:

m[cos(palft) — (v/c)2 cos(Ea/fic)\ = M  sin(£a//zc)

2.6. Mach’s Principle

Newton realized already that the law of motion F = ma implies the 
existence of a particular set of reference frames, called inertial reference 
frames, since these are the only frames where this law and the principle of 
inertia are valid for true forces. The acceleration would appear to be different, 
indeed, for any reference frame that is accelerated with respect to the former 
ones. This leads to the appearance of fictitious forces, resulting from an 
acceleration of the reference frame, while true forces are due to actual 
interactions of the observed body with other bodies. Newton thought that 
there exists an absolute space, that remains always motionless by its very
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nature, and that inertial reference frames are frames that are at rest or in a 
state of uniform motion with respect to this absolute space.

Mach(10) objected, as had Berkeley, that absolute space is a purely 
“metaphysical concept” beyond the reach of experimental verification. Since 
it is only meaningful to define the motion of one body with respect to some 
other body, he suggested that “absolute space” should be replaced by the 
most embracing system, i.e., the universe as a whole. This is called Mach’s 
principle, since it had to be postulated in addition to Newton’s law of motion.

The present theory removes this artifact, since we can derive both laws 
from the same basic principles. Defining an inertial reference frame as being 
a frame where the generalized Klein-Gordon equation (7) and the resulting 
energy-momentum relation (8) are valid, we were led to the generalization 
(10) of Newton’s law and to the conclusion that the universe as a whole 
would be at rest in this system.

3. RELATIVISTIC INVARIANCE

3.1. The Generalized Lorentz Transformation

Any physical law represents a statement about a physical system that is 
independent of the chosen reference frame. Nevertheless, it is necessary to 
express this law in terms of a mathematical relation, connecting various 
results of measurement that will be obtained by performing measurements 
with respect to a given frame of reference. The principle of special relativity 
requires simply that there exists a correspondence between the results of 
measurements that are performed in different inertial reference frames, so 
that any physical law expresses an intrinsic property of the system, indepen­
dent of the chosen reference frame.

Let us consider therefore two different inertial frames of reference where 
a measurement of the energy-momentum variables of a given body would 
yield different results: (E/c,px ,p y ,p z) and (.E'lc9px ,p y\ p z'). By measuring 
these values for all possible states of motion of the body, we have to get the 
same energy-momentuln relation in both inertial frames of reference. This 
leads with (8) to the requirement that

sin2(Ea/ehc) — £  sin2(/?*a/2/z) =  sin2(£"fl/2#c) — £  sin2(p*a/2/z) =  K
i i

where the constant K  is in general different from zero. Assuming that the 
inertial frames of reference are moving relative to one another along a com­
mon reference axis, we set

Pv =Pv  and Pz =Px (15)
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With p ' =  px and p = px , we can achieve the required invariance by means 
of the transformation

sin(E'al2ftc) =  y[sin(£<z/2/zc) — j3 sin(/?a/2#)] (16)

sin(p'al2fi) =  y[sin(pa/2/z) — j8 sin(Ea/2hc)] (17)

where
y =  (1 -  j3y/« (18)

The parameter /? specifies the state of relative motion of the chosen frames 
of reference. Its value has to be determined by considering the motion of 
some (arbitrarily chosen) reference object with respect to both frames. It 
follows indeed from (17) that this body will appear to be at rest in one 
reference frame (p' =  0) when E  and p are related in the other reference 
frame so that

q _  sin(pa/2K) 
^  sm(Ea/2hc) (19)

When we assume that the reference body is at rest with respect to the y  and 
z axes (py = p z =  0), we can conclude from (12) and (13) that

(m0ca/2fi)2 i 1/2 n _  v cos(Ea/2fic)
sin2(Ea/2hc) J or  ̂ c cos(pa/2ft) (20)

The first relation shows that /3 depends in general on the energy and the rest 
mass of the chosen reference body. This had to be expected, since the uni­
verse as a whole has to be in a state of rest for any particular inertial reference 
frame (the corresponding value of jS is zero). On the other hand, it follows 
from (19) and (12) that j8 <  1 when m0 ^  0 even when the reference body 
moves at ultra-light velocities, so that (18) remains always real.

The second relation (20) shows that j8 =  v/c for Efc and p fi\a, or for 
any value of E  and p when a =  0. This means that the mass of the reference 
body is irrelevant in our usual theory, and that we are then allowed to 
consider v as the relative velocity of the reference frames.

3.2. The Velocity Addition Law and the Doppler Effect

The generalized Lorentz transformation also allows to get a relation 
between the (average) velocities v = dE/dp and v' = dE'jdp' of a particle in 
both reference frames. For simplicity we assume again that this particle moves 
only along the common reference axis of both reference frames. Deriving 
(16) and (17) with respect to p and taking the ratio of the resulting expressions, 
we get

F - f cV  = 1 -  pV/c (21)



410 Meessen

where /3 is the parameter that specifies the relative motion of the chosen 
reference frames, while

cos(Ea/2hc) sinQa/2/Q , ,
pajlh sin(Ea/2fic) K )

with a similar expression for V'. We see that V =  v and V' = v when E\c and 
p <̂  hja. In general, it is necessary, however, to replace the velocities v and v' 
by the “quasivelocities” V and V' which are related by the addition law for 
velocities in the usual theory. We note that j8 =  V\c when V' =  0, in agree­
ment with (19) and (20).

We see that the velocity of light in vacuum is a universal constant for all 
inertial observers, since m0 =  0 implies that E = cp and V = v = c, accord­
ing to (13) and (22), while (21) leads to V' =  v* — c, for any value of j8. 
Einstein’s expression(11) for the relativistic Doppler effect can also be gener­
alized, even for sources that move faster than light. For photons, (E =  
fiœ = cp and E' = fiœ = cp') it follows from (17) that

sin(o>'a/2c) =  [(1 -  J8)/(1 +  j8)]V2 sin(o>a/2c)

3.3. A Change of Representation for the Spacetime Variables

The usual Lorentz transformation for the spacetime variables results 
from the requirement of relativistic invariance of the differential equation (6). 
In the particular case of two inertial reference frames that move relative to 
one another along the x and x' axes, we can satisfy this condition by means 
of the well-known transformation

x' = y(x — fict), ct' = y{ct — j6x), y' = y, z' = z (23)

with (18). Schild,(12) Hill,(13) and Ahmavaara(14) tried to generalize the 
Lorentz transformation for the spacetime coordinates when there exists 
a “discrete structure” of space and time, by considering the subgroup of the 
usual Lorentz transformations, called “integral Lorentz transformations,” 
which correspond to rotations that superpose (x, y9 z, ict) and (x', y \  z', ict') 
lattices on each other. This procedure is not physically acceptable, for the 
following reasons: (i) The choice of the inertial reference frames should be 
completely arbitrary, instead of being restricted to a discrete ensemble. 
Moreover, it is not necessary (ii) to assume the existence of an absolute 
spacetime lattice and (iii) to require a deterministic correspondence between 
the possible values of the spacetime coordinates.

We have actually to consider a change of representation of the state of 
motion of the particle, in terms of the quantized spacetime coordinates, which 
represent the only possible eigenvalues that could be found by an ideally exact
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measurement of these coordinates in the chosen frames of reference. An 
exact knowledge of the values (x, y, z, ct) of these coordinates in one frame 
would thus only allow for a statistical prediction of the distribution of the 
results of measurement for the (xf, / ,  z', ct') coordinates in the other frame. 
For each one of the reference axes, the problem is actually similar to the 
well-known situation for the components of a given angular momentum 
vector when these components are measured along two different reference 
axes.

It is one of the basic features of quantum mechanics that a given state of 
motion can be expressed equally well by means of a spacetime representation 
as by an energy-momentum representation. For a particle moving along the 
x  axis we then get the expression

The deterministic law of correspondence (16)-(18) allows us therefore to 
define the transformed function

For all practical purposes it is actually sufficient to use the generalized 
Lorentz transformation for the energy-momentum variables.

3.4. Average Coordinates and Causality

Although the actual values of the quantized spacetime coordinates can 
only be predicted statistically, there exists a well-defined average position for 
the particle in each one of the chosen frames of reference. When the particle 
moves uniformly, we can say that

where t and t' are the quantized time variables, while v and v are the group 
velocities, which are related to one another by (21) and (22), so that

A(x'} cos{E'aj2hc) _  A(xy[cos(Ea/2fic)lcos(pa/2fï)] — fic At 
c At' cos(//a/2/z) c At — j3 A(xy cos(Ea/2fic)/cos(pa/2fi)

When the time intervals At and At' are sufficiently large, we can consider 
them also as continuous variables, and replace the usual Lorentz trans­
formation (23) by

ifj(x, ct) =  J c(p)euvx-Et)/n dp

J<x> =  v At and A(x'y = v' At'

<x'y —  ^X> cc

(25)

(24)
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To show the physical meaning of these relations, we consider a particle (or 
a signal) that is created at a given instant and annihilated at some later 
instant. During the time At of its existence it moves a distance <x> =  v At in 
one reference frame. It follows then from (25) and (22) that another observer 
will get the value

At' = y( 1 — fiVjc) At (26)

when he measures the time of existence of the particle. Since /3 <  1 and 
V < c while y >  0, we see that At' is always positive when At is positive. The 
principle of causality, requiring that the sequence of events should be pre­
served for all inertial observers, is thus verified, even when the particle moves 
faster than light.

This is an important conclusion, since the principle of causality cannot 
be satisfied within the framework of the usual theory of relativity for particles 
that move faster than light, i.e., for tachyons.(15) These hypothetical particles 
satisfy Eq. (3) with a purely imaginary rest mass. It follows then from (23), 
with Ax = v At, that

At' = y (I — /3 v/c) At 

At' and At can now have different signs, since v > c.

3.5. The Energy-Momentum Horizon

We mentioned that the generalization (8) or (12) of Einstein’s relation 
leads to a periodicity in the space of the energy-momentum variables, so 
that we can restrict our considerations to the first Brillouin zone (Fig. 1). 
This means that we take into account increasing values of E/c and p , up to 
the point where the sine functions become equal to one. It is possible, 
however, to consider larger values for the sine functions, when the values 
of E/c and p are purely imaginary. The functions (4) are then attenuated, and 
the values E/c and p do not correspond any more to possible results of 
measurement for the energy-momentum variables. But we get, nevertheless, 
acceptable solutions of the general equations, defining “forbidden states,” 
in the sense of forbidden energy bands for electrons in solid state physics.

These solutions have to be considered, indeed, when we represent the 
generalized energy-momentum relation (12) by a hyperbola for the sine 
functions (solid lines in Fig. 3), and when we represent the generalized Lorentz 
transformation (16) and (17) as being equivalent to a change of reference 
axes (broken lines in Fig. 3). The so called “allowed” states of motion, with 
measurable values for the energy-momentum variables, correspond then to 
those values of the sine functions that are less than or equal to one. We see 
that this corresponds to a different “horizon” for two different inertial 
frames of reference (square and parallelogram in Fig. 3).
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Fig. 3. Graphical representation of the generalized energy- 
momentum relation and the generalized Lorentz transfor­
mation for two inertial frames of reference. The square 
and the parallelogram represent the horizons separating the 
allowed from the forbidden states of motion for each 
reference frame. Within these horizons, there exists a deter­
ministic correspondence between the results of measurements 
for energy-momentum variables.

To interpret these results, we have to recall that the theory of spacetime 
quantization is a “quantum theory” and that the predicted spectrum of 
possible measurement results is always defined with respect to a given experi­
mental setup. Thus we do not always get a continuous spectrum of possible 
eigenvalues, allowing us to prescribe a deterministic law of correspondence 
between the results of measurement in two different frames of reference, as 
was customary in classical physics. Some results of measurement are 
forbidden for each frame of reference.

The fact that the horizon for the observable energy-momentum variables 
is different for different inertial observers is actually required by our for­
mulation of Mach’s principle. The energy-momentum relation for the body 
of largest possible rest mass M  corresponds indeed to a hyperbola in Fig. 3. 
But there exists only one point (A or A') of this hyperbola which touches the 
horizon for two different frames of reference, and which corresponds always
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to the state of rest (p = 0 and E = Eu or p' =  0 and E' = Eu). We can 
actually draw the same graph (Fig. 1) for the energy-momentum variables 
in each of the reference frames.

4. CONCLUSIONS

The concept of an “elementary length” can only be introduced in our 
physical theories within the frame work of quantum mechanical concepts. 
This appears already in the definition (1) of the order of magnitude of the 
quantum of length.

Another argument corresponds to the fact that distances are only 
quantized along the chosen reference axes. This solves the old problem, 
raised by Pythagoras, who thought that any line should be considered as 
being constructed by means of a juxtaposition of very small, but finite and 
indivisible line elements. He was therefore very disapointed when he dis­
covered that the diagonal and the side of a square are incommensurable: 
their ratio thus defined an “irrational” number. This is not relevant, however, 
when the quantization is only associated with actual distance measurements, 
performed along the three chosen reference axes for a three-dimensional 
space, while all other distances are simply determined by calculation.

This concept allows also the preservation of the basic homogeneity and 
isotopy of space, since the reference axes can be chosen arbitrarily. We get 
thus a different spacetime lattice for all different frames of reference. There 
is no need for an absolute spacetime lattice, as seemed necessary before the 
advent of quantum mechanics.

Moreover, there is no need for considering “discontinuous motions,” 
since a particle does not have to cease to exist when it “jumps” from one 
lattice point to another one. It is sufficient to consider a progressive change 
of the probability distribution.

Finally, it is sufficient to define the possible states of motion in the 
energy-momentum representation to define the average velocity and the 
inertial mass of the particle and to describe the effect of a change of reference 
frame in a simple, deterministic way.

Replacing the usual differential equation by finite-difference equations, 
to take into account arbitrarily small intervals of space and time when 
a =7̂  0, we also had to replace the laws of relativistic mechanics by more 
general ones. Although the differences appear only at energies that are 
comparable to the total energy content of our universe Eu , we arrived at two 
important consequences: (i) Material bodies can move faster than light when 
a ^  0, and (ii) inertial frames are those frames where Newton’s second law
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is valid for true forces and where a body that has the highest possible rest 
energy Eu would be at rest.

The actual value of the quantum of length a can only be determined by 
measurements. It would actually be sufficient to show that the total energy 
content of our universe Eu oo to be sure that a ^  0. For the moment we 
can only show that such an assumption is not illogical and that it even has 
some very attractive features, like the justification of Mach’s principle or a 
justification of the “cutoff” procedure which is sometimes used to avoid 
divergences appearing in our present field theories. Some preliminary results 
encourage us to think that the theory of spacetime quantization might also 
provide a natural explanation of the new quantum numbers characterizing 
elementary particles. It is already very instructive, however, to get a deeper 
understanding of our present theories by considering them as a particular 
case of a more general theory.
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