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Abstract. C. Vedruccio invented an electronic system for non-invasive EM cancer detection, 
requiring only that a handy probe be moved a few centimetres over the surface of the body, 
close to the organ that should be tested. The probe contains a non-linear oscillator, emitting a 
very weak EM wave, with several frequency components (at 450, 900 and 1350 MHz, for 
instance). They are displayed on the screen of a spectrum analyser, which is fed by a small 
antenna that is situated about 2 meters away from the probe. The relative intensities of these 
spectral lines are predetermined, but when the probe is brought close to biological tissue, the 
height of one or several lines can be strongly reduced, according to the pathological state of 
the tested tissue. We explain this phenomenon, by establishing a mathematical model and by 
solving the resulting equations. Actually, the probe does stimulate minute electrical 
oscillations inside the tissue, but this requires an energy transfer, which is clearly detectable 
because of the peculiar properties of non-linear resonance interaction. 

 
 

Introduction 
 

In March 2000, the author met Clarbruno Vedruccio in Italy and incidentally, he heard 
about his astonishing invention. He had developed an electronic system for the detection of 
non-metallic mines, but discovered that it could also detect pathological modifications inside 
the human body. It appeared even that this system is particularly useful and efficient for early 
cancer detection. Since the reasons for this quasi-magical capability were not clear and since 
the author had studied the interaction of EM waves with matter of various types, including 
biological tissues, he was very intrigued.  

Having the opportunity to see this equipment and its performance, he was also astonished 
about the great simplicity of this new procedure. The human subject it standing, normally 
dressed, while a cylindrical probe is held a few centimetres away from the surface of the 
body, close to the organ that should be tested. The probe contains only batteries, an electrical 
circuit and a small antenna, situated inside a partially reflecting cavity. It emits a very weak 
EM wave that is not sinusoidal, but perfectly periodic, with a preset repetition frequency of 
450 MHz, for instance. A small receiving antenna, separated from the probe by about 2 
meters, feeds a spectrum analyser that displays equally spaced spectral lines that correspond 
to the fundamental frequency and at least two harmonics. The height of one or several of these 
spectral lines is drastically reduced, however, when the probe is brought close to some 
pathologically modified biological tissue. Normal tissue leaves the spectrum unaffected. Is it 
possible to explain such a strange behaviour?  

  The author wrote already in 2000 a report that had several objectives. (1) It reviewed and 
explained the basic theory of EM interactions with materials of various kinds, from kHz to 
GHz frequencies. Several processes are possible, indeed, but all of them can be treated in 
classical terms, since they don’t involve discrete quantum-mechanical transitions. (2) The 
report presented also an overview of experimental results for biological tissues, obtained 
between 1920 and 1999. Actually, one measured the impedance of blood and various types of 
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excised tissues, introduced in specially designed cells, to determine the values of the dielectric 
constant ε and the electrical conductivity σ at many frequencies. The technical tools were 
constantly improved and the spectral domain was progressively enlarged, but the measured 
values of ε and σ could always be related to established theories. (3) It was shown that the 
electrical properties of malignant tissues display significant differences with respect to those 
of homologous normal tissues. EM cancer detection should thus be possible!  

This report remained confidential, since the invention was not yet legally protected, but 
will be available on Internet1 in a version that includes more recent results, presents new 
experimental methods and proposes some ideas to explain the difference between normal and 
malignant tissues. Basically, the oscillating electric field of the EM wave can set charged 
particles in forced oscillations, polarize neutral particles and membranes or produce rotations 
small particles that carry a permanent electric dipole. These responses can reveal that some 
changes occurred at the molecular level, because of pathological modifications, but all this 
knowledge remained useless for diagnostic purposes, as long as the necessary tests had to be 
performed by means of complicated in vitro measurements.  

Some authors tried therefore to simplify this procedure. To get in vivo measurements, one 
can determine the effects of a current passing through a more or less extended part of the 
human body, by measuring the resulting potential difference near these points or further 
away2. This yields already useful results, but they are rather imprecise, since they depend on 
inhomogeneous tissue structures, situated between the surface electrodes. A more refined, but 
much more expensive method considers the reflection of microwaves3. This requires good 
contact for impedance matching and relatively high intensities, especially when malignant 
tissues should be destroyed, because of their higher specific absorption of microwave energy. 
Vedruccio’s system is radically different4.  

Contact with the body surface is not necessary and there are no health hazards. According 
to recent measurements, the receiving antenna of the spectrum analyser catches only 1.58 µW, 
100 nW and 1 nW, respectively for the first, second and third spectral line. Moreover, an 
examination doesn’t have to last more than about 5 minutes. Although the ”bioscanner” 
explores only what happens at three (or eventually four) frequencies, they can be chosen to 
optimise the discrimination of selected anomalies in particular organs. Rigorous medical tests 
have already been performed in different institutions, with the approval of ethical 
commissions5. We mention here only that the presence, as well as the absence of malignant 
prostate cancer could be established in more than 90% of the tested cases, with confirmations 
by biopsy or other methods. The instrument is under development by the Italian company 
Galileo-Alenia6 and should be available in the fall of 2003, with computer software to 
facilitate diagnostic interpretation. Further medical tests are underway.  

Although this instrument applies physical principles to visualize hidden realities, like a 
cardiograph or X-rays for instance, it is new and its capabilities are so extraordinary and 
unsuspected that scepticism is quite natural. Oncologists could even object that there are 
various forms of cancer cells and different stages of development. How could the usually 
necessary, very painstaking microscopic analyses be shortcut by an apparently very global 
method? First of all, the aim of the new development is not to replace these analytic methods, 
but to provide a simple and economic method for preliminary screening. If this could be 
realised early enough, it would definitely be advantageous. Moreover, we shouldn’t give more 
credit to a priori judgements concerning the diagnostic efficiency and selectivity of this 
method than to careful and controlled testing. It seems worthwhile to find out, but to avoid the 
suspicion of charlatanism, it is also necessary to clarify the working principle of this 
apparatus. This is even a matter of normal scientific curiosity. 

In the first part of this paper, we show that it is possible to conceive a model of the probe 
and the tested biological tissue, so that the relevant behaviour of this system will be described 
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by means of only two variables, satisfying two coupled differential equations. One of them is 
non-linear. It is of the van der Pol type, initially introduced to account for the properties of a 
triode that activates an oscillating electric circuit7. Today, a transistor or a tunnel diode8 
replaces the vacuum tube. In the second part, we solve these equations for the simplest 
possible case, where the generator is tuned in such a way that it delivers a practically 
sinusoidal signal. There is thus only one frequency component, but it appears already that the 
non-linear differential equation has several surprising consequences. In the third part, we treat 
the more general case, where the generator produces at least three spectral lines. This 
accounts for the observed facts. As far as we know, the problem of “non-linear resonance 
interaction” (NLRI) has not yet been treated.  
 

 
1. The coupled active and passive oscillators 

 
To understand the working principle of Vedruccio’s invention, we don’t have to know 

constructional details, but it is essential to make it mentally transparent, by considering an 
equivalent circuit diagram. The left part of figure 1 represents the probe and the right part the 
tested biological tissue, while the intermediate, interrupted lines indicate how the coupling is 
realized. The sizes give a visual impression of hierarchy. For element T (triode, transistor or 
transistor-tunnel diode hybrid circuit), we indicate only what is really essential. T is powered 
by batteries and the grid of the triode or base of the transistor is inductively coupled to the self 
L1 of the first oscillating circuit, to get positive feedback, but for us, it is only important that 
the current I passing through T is a non-linear function of the applied potential difference V.  

The first oscillating circuit and element T constitute, together, an active oscillator that can 
create electrical oscillations inside the tested biological tissue. We consider only one passive 
oscillator, although there are several subsystems that could oscillate, but their mutual 
interactions are negligible in regard to instantaneous electrical responses. We can even 
imagine an oscillating electric circuit, where the self L2 and the capacity C2 determine the 
value of the resonance frequency, while the resistance R defines the energy loss. We indicate 
currents and potential differences that will allow us to describe the behaviour of this system. 
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Figure 1: The equivalent electric circuit of the coupled active and passive oscillators.  
 

First of all, we have to stress the fact that usually, one considers a magnetic coupling 
between oscillating circuits or an electric coupling where the capacity C is a common element 
of both circuits. Here, we consider a capacity C that allows an oscillatory current to pass from 
one circuit to the other. C increases when the probe is approaching the tissue. We have chosen 
this model, since we know that the probe contains a small antenna and that the tested 
biological tissue is only separated from the probe by a small distance compared to the 
wavelength, which is 65 cm at 460 MHz. This means that the passive oscillator is subjected to 
the “near field” of the emitted wave, where retardation effects are negligible. By creating a 
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standing wave, we could produce electrically equivalent situations at regularly distributed 
places, but here, we consider only the usual procedure, where the bioscanner emits a 
propagating wave. In the near field, the spatial distribution of the electrical field lines is then 
the same - at every particular instant - as for a static field (quasi-static approximation). The 
antenna plays thus in this region the role of an “open capacity”, but it creates an oscillating 
electric field. This field induces forced oscillations of charged particles, polarizes neutral 
particles or sets small dipolar particles in rotation, when the frequency is adequate.  

It is important to note that the intrinsic properties of the biological tissue (represented by 
L2, C2 and R) can’t be affected by the coupling. The values of L1 and C1 are fixed by 
preliminary tuning. There are thus two distinct natural frequencies, determined by the 
products L1C1 and L2C2. The resistance of the first circuit is assumed to be negligible or more 
precisely, to be compensated by the transistor T. It should be noted that a single parallel 
resistance is sufficient to characterize energy losses in the second circuit. Applying 
Kirchhoff’s law, we get Io + I + I1 = 0 and I2 = I3 + I4. Since these relations have to be 
satisfied at every particular instant, we can assert that the time derivatives  
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Actually, there are only two variables that have to be considered: the potential differences 
V and U. To show this, we note that in the first circuit,  
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The current-voltage curve of element T is represented in figure 2. For small values of V, 

there appears a negative resistance. For larger values of V, the normal tendency, which yields 
increasing currents for increasing potential differences, is restored, but in general, we don’t 
get a perfectly anti-symmetric curve.  

 
 I 

V 0 

 
 

Figure 2: The current-voltage characteristic of element T 
 
A tunnel diode could be used alone9, but a more flexible design is preferable. We assume 

therefore that the negative resistance is modifiable and that   
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This equation is non-linear. When C = 0, it reduces to the famous van der Pol equation, 
initially introduced to explain the fact that triodes can be coupled to an oscillating circuit in 
such a way that one gets oscillations of constant amplitude. They are not necessarily 
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sinusoidal, but they are periodic and the repetition frequency is equal to the natural frequency 
of the oscillating circuit. We consider the more general case, where such an “auto-oscillator” 
is coupled to a passive oscillator. Equation (1) takes this into account by means of its second 
member. In the other circuit,   
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It follows that 
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Equations (1) and (2) account for any possible behaviour of the active and passive 

oscillators. They should thus also help us to understand the surprising capabilities of the 
bioscanner, but it is useful to make these equations more transparent, by introducing natural 
units. We set α - 2βV - 3γV2 = α(1 - 2pmV - m2V2), where m2 = 3γ/α and pm = β/α. Then, 
we multiply (1) by m/C1 and (2) by m/C2. This yields two coupled differential equations for x 
= mV and y = mU, where ω while µ = α/C,CL/1andCL/1 22

2
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The coupling constants k1 = C/C1 and k2 = C/C2 are pure, positive numbers, while µ and ν 

have the dimensions of a frequency. Equation (3) is non-linear. This will turn out to be very 
important but the most unusual feature is that the coupling involves second order time 
derivatives of the variables x and y. This dynamic coupling accounts for the fact that the 
capacity C facilitates the passage of high frequency currents. It is usually assumed that p = 0, 
but we will see that it is important to consider the more general case where p ≠ 0.  

To get a feeling for the solutions of (3) and (4), we consider some special cases. When C = 
0, so that k1 = k2 = 0, we get two distinct and well-separated oscillators. The second one is 
simply a damped harmonic oscillator, while the first oscillator would be an ideal harmonic 
oscillator for the particular where µ = 0. The general solution could then be written in the 
form x = Acos(ωt + φ), were ω = ω1, while the amplitude A and the phase factor φ are 
determined by initial conditions. Such an oscillator would have to be set in motion, indeed, by 
some specific action. As soon as µ ≠ 0, there appears a qualitative change, since the resting 
state x = 0 becomes unstable. The slightest perturbation will automatically be amplified, but 
the capacity tends to be discharged. When µ « 1, we get slowly amplified oscillations, but 
finally, the system will reach a stationary state of perfectly sustained, practically harmonic 
oscillations.  

Larger values of µ (for instance µ = 1 or µ = 10) will lead to rapid amplifications and to 
rapid discharges. A short time interval is then sufficient to reach the stationary state and we 
get a periodic succession of identical pulses. This is equivalent to a superposition of harmonic 
waves, with frequencies that are integer multiples of the fundamental frequency. Balthasar 
van der Pol investigated their waveforms and calculated “limit cycles”, represented by closed 
graphs in the plane)x,x( & 10. He called such a regular or quasi-regular succession of pulses a 
“relaxation oscillation” and he showed that it appears quite often in nature and technology. 
Cracking doors, waving flags, the beating heart and economic crises, provide good 



 6

examples11. But when the capacity C ≠ 0, the differential equations (3) and (4) are coupled to 
one another and this gives rise to surprising phenomena. 

 
 

2. Resonance interaction for one available frequency 
 

To acquire physical insight, we start with the simplest possible situation, where µ is very 
small, since the unperturbed generator would then produce a nearly harmonic oscillation. van 
der Pol considered already a very similar problem12, but his oscillating circuits were purely 
electronic ones, where the coupling capacity was a common element of both circuits. Since 
the capacity C is then respectively in series with C1 and C2, the natural frequencies ω1 and ω2 
that appear in equations (3) and (4) are modified. Moreover, the second members of (3) and 
(4) would then have to be replaced by and  B. van der Pol found that such a 
system has very remarkable properties, but he missed the phenomenon, which is central for 
EM cancer detection.  

yk 2
11ω− .xk 2

22ω−

This results from the fact that his attention was focused on another phenomenon, related to 
the existence of two possible frequencies. They appeared already for an isolated unperturbed 
generator, when the current-voltage curve of element T contains a term in V5. The system will 
then automatically choose one of the two possible frequencies13. When a resistance, included 
in the circuit, is progressively increased or decreased, the system tends always to preserve its 
previous state of oscillation, but this is only possible up to a certain point. We get thus a 
typical hysteresis phenomenon - which simply means: delayed evolution. Experimentally, van 
der Pol had observed already a similar phenomenon in1920, when a triode oscillator was 
magnetically coupled to a passive oscillator, but this was published somewhat later10.  

Appleton14 considered then the case where two triode oscillators are magnetically coupled 
to one another. In ordinary, linear physics, it is well known that the coupling of two harmonic 
oscillators can lead to coordinated oscillations at the same frequency, but there are two 
possible frequencies ω±. They differ from the natural frequencies ω1 and ω2 of the uncoupled 
oscillators. Even for two identical, elastically coupled pendulums, they are slightly different 
from one another. In general, one gets then a superposition of these two “normal modes” of 
oscillation. The ratio depends on the initial conditions, but the superposition leads to beat 
phenomena. When two non-linear oscillators are coupled to one another, there are also two 
possible frequencies, but no beats when ω1 and ω2 are sufficiently close to one another, 
without being identical. The system chooses one of the possible frequencies. 

Such a “spontaneous synchronization” had already been noted for pendulum clocks and 
organ pipes, but was explained for the first time by solving two coupled non-linear differential 
equations of the van der Pol type. Modifying ω2 so that this value is approaching ω1, both 
oscillators will suddenly start to oscillate at the same frequency, although ω1 and ω2 are still 
different from one another. This will continue when ω2 is increased, until the difference 
between ω2 and ω1 reaches the same absolute value as for the previous synchronization. This 
phenomenon is also called “entrainment”. It occurs even for very small amplitudes and has 
particularly important applications in the domain of biorhythms15. The circadian rhythm is 
entrained by the day and night variations of solar light and other rhythms are entrained by 
seasonal variations.  

Before we solve the coupled differential equations (3) and (4), we recall the results of van 
der Pol’s experiment, performed in 1920. These results are summarized in figure 3 (redrawn 
from reference 12, 1922). The intensity x2 of the oscillations of the generator decreases when 
the natural frequency ω2 of the passive oscillator is progressively increased, until it reaches a 
certain value, situated beyond the resonance frequency. At this point, the intensity of the 
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stationary oscillations of the generator “jumps” to a higher value. It is not yet the normal 
value for the unperturbed oscillator, but this value will finally be reached by a continued 
increase of ω2. When ω2 is then decreased, the intensity of the stationary oscillations of the 
generator is also decreased. The process is symmetric, but not reversible in exactly the same 
way. There are thus two possible states of oscillation, but the system will automatically 
choose one of them. Since this state depends on past history, the coupled system displays 
hysteresis. 

 
 x2 y2 

ω1 ω1 ω2 ω2 
 

Figure 3:  Variations of the intensities of the oscillations of the active and passive oscillators  
when the natural frequency of the passive oscillator is progressively increased or decreased.  

 
The second part of figure 3 shows that the amplitude of the oscillations of the passive 

oscillator increases when those of the active oscillator decrease. This means that there is an 
energy transfer, but it cannot alternate, as this happens in beat phenomena. van der Pol could 
relate this to the non-linearity of equation (3). Actually, he combined the second order 
differential equations for x and y, to get a forth order differential equation for x. It allowed for 
two frequencies ω± when µ «1. He considered therefore a superposition of oscillations at both 
frequencies, where the amplitudes can vary in the course of time:  

 
x = a(t) sin(ω-t) + b(t) sin(ω+t + ϕ)                                            (5) 

 
The compounded equation for x did then yield two coupled differential equations, 

determining the evolution of the intensities a2 and b2. Their solutions proved that “the 
simultaneous occurrence of finite stationary oscillations of both the coupling frequencies 
represents an unstable condition and can therefore not be realized in practice”. When the two 
possible modes of oscillation coexist at a given instant, one of them will spontaneously 
become more intense at the expense of the other. The “jump” has necessarily to occur for a 
particular situation, which could also be specified. This was a beautiful result, but we are 
interested in another property of coupled active and passive oscillators.  

We assume that the generator has reached its stationary state of sustained oscillations 
before it is brought close to the passive oscillator, and we don’t change the natural frequencies 
ω1 and ω2. We simply increase the values of the coupling constants k1 and k2. Assuming that 
the amplification factor µ « 1, we expect that harmonics will remain negligible, even for finite 
values of k1 and k2. The new stationary state of the active oscillator should be described by  

 
x = A cos(ωt) + …                                                            (6) 

 
where the amplitude A and the (angular) frequency ω are unknown. The neglected terms are 
at best of the order of µ. Since equation (4) can be written in the form  
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we see that the passive oscillator will be set in forced oscillations. Substituting (6) we get  
 

y = -k2ω2A [F(ω)sin(ωt)  + G(ω)cos(ωt)] + …                                   (7) 
 
where  
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For simplicity, we used the notation Ω2 = (1 + k2)ω2. We get thus a typical resonance 

phenomenon, although we assumed dynamic coupling. The function F(ω) is always positive 
and displays a maximum (F = 1/νω) when Ω = ω2. At this frequency, G(ω) = 0. The forced 
oscillation is thus the strongest when ideal resonance is achieved, but the forced oscillation 
lags then behind the oscillations of the generator with a phase difference of exactly 90°. At 
lower frequencies (Ω < ω2), G(ω) is positive, which means that the passive oscillator tends to 
remain in step with the active oscillator. Beyond resonance (Ω > ω2), G(ω) is negative. At 
very high frequencies, the passive oscillator can’t follow very well: forced oscillations have 
very small amplitudes and they are opposite to those of the generator. The values of A and ω 
are still unknown, but they will be determined by substituting (6) and (7) in equation (3). The 
non-linear term µ  is then equal to x)xpx21( 2 &−−

 
µωA[1 – 2pAcosωt - (A2/2)(1+cos2ωt)] sinωt  =  µωA[1-(A2/2)+(A2/4)] sinωt + … 

 
To remain consistent, we neglect all terms that oscillate at frequencies 2ω and 3ω, since 

they were also neglected in (6) and (7). Equation (3) yields now the condition  
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where a = A/2 and k2 = k1k2. Since this condition has to be satisfied at every particular instant, 
we get two relations:   
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For the unperturbed generator (k1 = 0), the transistor leads spontaneously to the appearance 

of stationary oscillations of particular amplitude (a = 1 or A = 2 for the chosen natural units). 
Of course, ω = ω1. The values of A and ω will be modified, however, when the active and 
passive oscillators interact with one another. Figure 4 illustrates the first relation (8).  

The amplitude A of the stationary oscillations can never be increased, since F(ω) can’t be 
negative. The reduction of A with respect to its value for the unperturbed generator has the 
shape of F(ω), multiplied by ω3. This yields a non-symmetric curve. The highest possible 
value of F(ω) is achieved when Ω2 = (1+k2)ω2, which implies that G(ω) = 0. The second 
relation (8) shows then that (  Ideal resonance is thus achieved when  .)k1 2
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2
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Figure 4: When the active oscillator is coupled to a passive oscillator, the intensity a2 

 of the stationary oscillation of the generator reaches its lowest value at ideal resonance. 
 

The active oscillator is able to draw a certain amount of energy from the batteries, as a 
result of the peculiar non-linear characteristics of element T, but it is also able to transfer 
some energy to the passive oscillator. There exists a resonance phenomenon, but the dynamic 
coupling implies that optimal energy transfer is not necessarily achieved when the natural 
frequency of the passive oscillator is equal to the natural frequency of the active oscillator. 
The actual condition (9) depends on the values of the coupling constants k1 and k2. This is 
very important, since the values of ω1 and ω2 are fixed. The probe could be tuned in advance 
to achieve optimal response to a particular pathological state in a particular organ, but there 
can exist individual variations and the requirement of sharp tuning would then not be 
desirable at all. Fortunately, we don’t need it.  

Empirically, it appears that it is useful to move the probe with respect to the tested tissue, 
with a sort of scanning motion until one finds the position where the spectrum analyser 
displays the largest “dip” for the stationary oscillations of the active oscillator. This seems to 
correspond to an adjustment of the values of the coupling constants k1 and k2 until condition 
(9) is satisfied for given values of ω2 and ω1. Since k1 = C/C1 and k2 = C/C2, we are simply 
choosing a place where the capacity C is adequate for ideal resonance. For k1 « 1 and k2 « 1, 
we would get g = 1 or eventually, g = 1 + (k2-k1)/2. Since the values of C1 and C2 are very 
small (to get high values for the natural frequencies ω1 and ω 2), we expect that k1 and k2 can 
easily reach relatively large values with respect to 1. This increases the efficiency of the 
system for the discovery of possible resonance phenomena!  

It should be noted that the depth of the “dip” is not only proportional to k2 = k1k2, but also 
to ω2. This is a consequence of the dynamic coupling, but we know1 that the high frequency 
domain is also very favourable for the detection of significant differences between malignant 
and normal tissues. This results from a higher density of bound water molecules or dipolar 
protein fragments, sticking out of membrane surfaces. They can easily be set in rotation, even 
if these rotations are partly hindered, but this leads to increased energy absorption. This is also 
favourable for our purposes, since the depth of the “dip” in figure 4 is proportional to 1/ν = 
RC2. The total energy of the active and passive oscillators is proportional to   

 
x2 + y2 = A2cos2ωt  + (k2ω2)2A2[F(ω)sin(ωt)  + G(ω)cos(ωt)]2  

 
The average value is thus proportional to  
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We see that the coupling increases the total energy drawn from the batteries. It reaches its 

largest value when ideal resonance is achieved. The relative increase is then equal to 
In other words, the active oscillator draws as much energy it can from the 

batteries, to share it with the passive oscillator. Nevertheless, its own amplitude of oscillation 
is decreased, as indicated by figure 4. The active oscillator seems to make a “big effort”. 

.)/(k 22
2 νω

Another remarkable feature is that the depth of the “dip” is proportional to 1/µ. This fact 
demonstrates most dramatically that non-linear systems are qualitatively different from linear 
ones. The behaviour changes very abruptly, as soon as µ ≠ 0, but a negative resistance is not 
sufficient to allow for an energy transfer. There has to be a term in x2 in equation (3), while 
the term px is irrelevant when µ is very small.  

What are the possible values of the (angular) frequency ω? We know already that ideal 
resonance requires that  and  which leads to (9), but in 
general, there are two possible frequencies. They are determined by the second relation (8) 
and the expression of G(ω). Setting c
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Without coupling, there are two possible solutions: ω = ω1 for the active oscillator and ω = 

ω2 for the passive oscillator. For the coupled oscillators, we get a solution ω  where 
ε is small and can thus be calculated very easily. This yields  
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The same procedure yields also the solution where ω is close to Ω2, but according to van 

der Pol’s reasoning, we expect that the system tends to preserve its previous state. The 
generator was oscillating at the frequency ω1 before it was brought close to the passive 
oscillator. The frequency ω should thus remain close to Ω1. It is increased when ω2 < gω1 
(implying that Ω2 < Ω1). When ω2 > gω1, it is decreased. Anyway, we don’t have to worry 
about the frequency, since the experimental procedure calls only for the observation of an 
eventual reduction of the amplitude A.  
 
 

3. Non-linear resonance interactions at several frequencies 
 

So far, it appeared that the probe is able to “feel” what happens inside biological tissues 
and to “tell” us that it is transferring energy, since it oscillates with decreased amplitude. 
Although the passive oscillator remains hidden, we are able to detect a resonance for its 
forced oscillations. This appeared already when µ « 1 and was even particularly pronounced 
for very small values of µ, but we got then only one frequency component. A larger value of 
µ would produce harmonics and this could allow for a simultaneous search of non-linear 
resonance interactions on several frequency channels. This is so advantageous, that we may 
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prefer the compromise where the effects of non-linear resonance interactions are decreased 
for the fundamental frequency, but can become apparent for harmonics. In Vedruccio’s set-
up, one can easily observe three spectral lines, corresponding to the fundamental frequency 
and the two first harmonics. Empirically, he discovered that they have the following 
properties: 

 
• The first, second and third spectral lines can decrease independently from one another, so 

that one has to accept the possible detection of different resonance phenomena. 
• The second and third lines seem to be depressed more easily than the first one. 
• A depression of the first line in addition to those of the second and third line indicates a 

particularly severe pathological modification. This is useful for diagnostic purposes. 
 
Each one of these points requires a theoretical justification. We will thus try to solve 

equations (3) and (4) for a value of µ that is large enough to produce a non negligible second 
and third harmonic, but small enough to yield a convergent series of higher frequency 
components. This means that we replace (6) by the more general solution 
 

x = A cos(ωt) + A1 cos(2ωt) + B1 sin(2ωt) + A2 cos(3ωt) + B2 sin(3ωt) +  …                    (10)   

 

The amplitudes A1 and B1 are proportional to µ, while A2 and B2 are proportional to µ2, 
where µ < 1. It should be noted that (6) and (7) could have been replaced by 

 
x = B sin(ωt) + ...   and      y = -k2ω2 B [G(ω)sin(ωt) - F(ω)cos(ωt)] + ... 

 
This is merely a matter of choosing the instant t = 0, but when we consider harmonics, we 

are obliged to allow for possible phase differences. We consider a single passive oscillator, 
interacting with the active oscillator, but we can imagine several passive oscillators with 
different characteristics, so that one of them can eventually be set in resonance. We have now 
to introduce (10) in equation (4), but we can immediately assert that this will yield the 
following response:  

 
y =  - k2ω2A[F(ω)sin(ωt) + G(ω)cos(ωt)]  - k2ω2A1[F(2ω)sin(2ωt) + G(2ω)cos(2ωt)] 

- k2ω2B1[G(2ω)sin(2ωt) - F(2ω)cos(2ωt)] - k2ω2A2[F(3ω)sin(3ωt) + G(3ω)cos(3ωt)] 
- k2ω2B2[G(3ω)sin(3ωt) - F(3ω)cos(3ωt)] + ...                                                              (11) 
     

To solve (3), we have to evaluate the non-linear term –µ(1-2px – x2)dx/dt  = dZ/dt, where 
Z = –µ[x – px2 – (1/3)x3]. Since we limit our perturbation calculation to second order effects, 
it is sufficient to retain only the following terms in Z:  

 
x  =  A cos(ωt) + A1cos(2ωt) + B1sin(2ωt) 

x2 =  A2cos2(ωt) + 2AA1cos(ωt)cos(2ωt) + 2AB1cos(ωt)sin(2ωt) + … 

    =  (A2/2)(1-cos2ωt) + AA1(cosωt + cos3ωt) + AB1(sinωt + sin3ωt) + … 

x3 =  A3cos3(ωt) + 3A2A1cos2(ωt)cos(2ωt) + 3A2B1cos2(ωt)sin(2ωt) + … 

    =  (A3/4)(cos3ωt + 3cosωt) + 3(A2/2)(A1cos2ωt + B1sin2ωt) + … 
 

Higher frequency terms are neglected, as well as other constant terms, since we have to 
calculate the time derivative  
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dZ/dt = µω [Csin(ωt) + Dcos(ωt) + C1sin(2ωt) + D1cos(2ωt) + C2sin(3ωt) + D2cos(3ωt)] 
 

Setting again A = 2a, the coefficients are   
 

( ) 11
2 pABDpAa1AC −=−−=  

1
2

1
2

1
2

1 B)A1(DpAA)A2(C −−=−−=  

121
2

2 pAB3D)pA3a(AC =+−=  
 
Substituting (10), (11) and dZ/dt in equation (3), we get an ensemble of conditions that 

have to be satisfied at every particular instant:  
 

( ) )(GAkDA)k1( 422
1

2
1 ωω=µω+ω+−ω                            (12) 

                                              (13) )(FAkC 42 ωω=µω
( ) [ ]11

42
11

2
1

2
1 B)2(FA)2(GkDA4)k1( ω−ωω=µω+ω+−ω       (14)         

( ) [ ]11
42

11
2

1
2
1 B)2(GA)2(FkCB4)k1( ω+ωω=µω+ω+−ω       (15)             

( ) [ ]22
42

22
2

1
2
1 B)3(FA)3(GkDA9)k1( ω−ωω=µω+ω+−ω        (16)             

( ) [ ]22
42

22
2

1
2
1 B)3(GA)3(FkCB9)k1( ω+ωω=µω+ω+−ω        (17) 

  
In (12) and (13), we can drop the common factor A. This yields the result (8), with a first 

order correction for a = A/2 and a second order correction for ω: 
 

1
422

1
2

11
222 pB)(Gk)k1(andpA)(F)/k(1a µω+ωω−ω=ω+−ωµω−=           (18) 

 
Solving (14) and (15), we get for the lowest order expressions,  
 

( )
( ) ( )2422422

1
2
1

242

1
)2(Fk)2(Gk4)k1(

A)2(FkpA
ωω+ωω−ω+−ω

ωωωµ
=  

 
( )

( ) ( )2422422
1

2
1

422
1

2
1

2

1
)2(Fk)2(Gk4)k1(

)2(Gk4)k1(ApB
ωω+ωω−ω+−ω

ωω−ω+−ωωµ
=  

 
They were obtained by adopting the lowest order approximation of (18), so that a = 1 and 

 We see that A.)k1( 2
1

2
1 ω=ω+ 1 = B1 = 0 when p = 0. There would thus be no second spectral 

line, if we had adopted the usual van der Pol equation. We set now  
 

ω = qω1,        where       q2 = 1/(1+ k1) 
  
Thus,  

0kwhen
3
pqABand0A

1

2

11 =
ω

µ
−==  

 
This is equivalent to the result obtained by van der Pol for the unperturbed generator16, but 

he used a model where q = 1. His perturbation calculation was very efficient, but less 
transparent and he assumed a priori that A1 = 0. This is not true anymore for coupled 
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oscillators. A1 reaches even its largest value when F(2ω) is maximum. Ideal resonance is then 
achieved when  

 
12

2
1

2
1

2
2

2
2 g2or)k1(and4)k1( ω=ωω=ω+ω=ω+  

 
For small values of the coupling constants, this condition reduces to ω2 = 2ω1, but we see 

again that ideal resonance could be achieved or at least, approached more easily by simply 
adjusting the coupling. Setting c = µpqA2/ω1 and z = k2ω2F(2ω) = k2ω/2ν at resonance, where 
G(2ω) = 0, we see also that the magnitude of the second spectral line will be determined by  

 

22122

2

1 )zq(9
c3Band

)zq(9
zqcA

+
−

=
+

=  

 
The absolute value of B1 decreases for increasing values of z or k2, but A1 can increase. 

Does this imply that the height of the second spectral line could eventually be increased? No, 
since the intensity of the first harmonic wave component is proportional to  

 

22

2
2
2

2
1 )zq(9

cBA
+

=+   

 
This expression can be approximated by (c/3)2(1- q4k4ω4[F(2ω)]2/18). It appears therefore 

that an ideal resonance (for ω2 = 2gω1) would strongly reduce the second spectral line, 
especially at high frequencies. According to (17), the intensity of the first spectral line is 
proportional to 

 
A2 = 4(1 – k2ω2F(ω)/µ – pA1)  

 
It is not so strongly affected by F(ω) when µ is not exceedingly small, but we see that A1, 

which increases for relatively small values of z, could also contribute to a reduction of A2. 
This is an example of lateral interactions between neighbouring spectral lines. 

Solving (16) and (17), we get for ideal resonance (ω2 = 3gω1), 
 

( ) ( )
0kwhen

8
pqABp3

)3(Fk8

)3(FkAa)8(pAB3A
1

1
24222

1

42222
11

2 =
ω

µ
=

ωω+ω

ωωµω−ωµω
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( ) ( )
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qA

3(Fk8

)8(AaB
1

3

24222
1

22
1

2

2 =
ω

µ−
=

ωω+ω

ωµω−
=  

 
The particular case of the unperturbed generator (k = 0) corresponds to van der Pol’s 

result14 (where g = 1), with a sign correction for B2. The cause of this error can be traced in 
his calculations. We see now that even for the unperturbed generator, the intensity of the third 
spectral line is influenced by the existence of a second spectral line (A2 is proportional to B1) . 
We also see that a coupling with a passive oscillator that resonates when ω2 = 3gω1 will 
reduce the intensity of the third spectral line for two cooperative reasons: F(3ω) appears not 
only in both denominators, but also in the numerator of A2. These effects are more 
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pronounced at high frequencies, where malignant tissues have larger conductivities and 
absorb thus more energy from the generator.  

Because of the non-linear term in equation (3), larger values of µ would lead to more 
combination frequencies and therefore to more harmonics and increased lateral interactions, 
even beyond the first neighbour. Analytical calculations would become more complicated, but 
we understand already the underlying processes. The parameter µ should thus be large enough 
to allow for simultaneous explorations on different frequency channels, but not too large, to 
limit confusing lateral interactions between neighbouring spectral lines. 

 
 

4. Discussion and Conclusions 
 
The efficiency of Vedruccio’s EM cancer detector results from a favourable conjunction of 

two elements. (1) EM waves can stimulate minute electrical oscillations in biological tissues 
and they allow for resonance effects that depend on the pathological state of these tissues. (2) 
By coupling the oscillations of the probe with those that can appear inside biological tissues 
we get the highly remarkable phenomenon of “non-linear resonance interaction”. It has been 
analysed in detail, but it may be useful to summarise the essential steps, especially for the 
non-mathematically minded reader. 

 
• The probe contains an auto-oscillator, generating stationary oscillations of preset, but 

tuneable amplitude and repetition frequency. It is possible to get several harmonics in 
addition to the fundamental frequency, and this allows for a simultaneous search of 
possible resonance interactions on several frequency channels.  

• It is sufficient to bring the probe near the biological tissue that should be tested. The 
generator is then able to “feel” the hidden response of passive oscillators inside the 
biological tissue and to “tell” us the result by means of non-linear resonance interactions. 
They result from the fact that the generator draws energy from the batteries in such a way 
that we get stationary oscillations of predetermined amplitude, but this amplitude will be 
reduced when the generator transfers some of its energy to a passive oscillator. Thus, we 
can detect a resonance at any one of the available frequencies, through the appearance of a 
“dip” for the corresponding spectral line.  

• The coupling is achieved in a special way, since the probe contains an antenna, behaving 
(in the near field) like an open capacity. The oscillating electric field acts there on charged 
particles, hidden inside the tested biological material. Ions can oscillate, cell membranes 
can be polarized and small dipolar particles can be set in rotation, but these processes are 
modified by malignant alterations of biological tissues. In spite of fixed frequencies for the 
active and passive oscillators, it is possible to realize or approach ideal resonance by 
adjusting the distance between the probe and the tested tissue.   

• Since the required intensities of the EM wave are very low, this new and surprising method 
of cancer detection implies no health hazard. It is user-friendly, as well for the patient as 
for the medical doctor. The actual relation between specific pathological conditions and the 
observed, differentiated reductions of the three first spectral lines has to be established, of 
course, by detailed medical testing. 

 
The differential equations (3) and (4) can easily be solved by numerical integration. This 

allows for a flexible exploration of the role of all parameters and for further generalizations, 
but the results have to be interpreted in terms of the analytical treatment we presented here.  

Clarbruno Vedruccio observed that when two probes that have nearly identical natural 
frequencies are put side by side, they oscillate at exactly the same frequency, although their 
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natural frequencies may differ by about 10 MHz. The spectrum analyser shows superposed 
spectral lines, as if there did exist only one, but stronger generator. This observation confirms 
the validity of the proposed theory, since such a “synchronization” is known to occur for 
coupled van der Pol oscillators12,13. 

The interaction between a non-linear active oscillator and an ordinary (linear) passive 
oscillator leads to the peculiar phenomenon of “non-linear resonance interaction”. A similar 
behaviour is known for a grid-dip meter. Initially, it contained a triode17 that was associated 
with an oscillating circuit in such a way that it delivered a stationary oscillation at one 
particular, easily tuneable frequency. There was no antenna and no emitted wave, but the 
active oscillator could be coupled by magnetic induction with another oscillating circuit, 
containing a real coil. When such a grid-dip meter is tuned, so that its natural frequency is 
identical to the natural frequency of the passive oscillator, there will be a resonance. Since the 
active oscillator is transferring energy to the passive oscillator, the oscillating current passing 
through the self of the active oscillator is reduced, and a measuring instrument, included in the 
grid circuit, will indicate this effect. At resonance, there appears a “grid-dip”, but to avoid 
ambiguities, the active generator should produce no harmonics.  

 The EM cancer detector is different, since it allows for an electric coupling, activating 
charged particles inside biological tissues or other polarizable materials. Moreover, there are 
harmonics, but the spectrum analyser allows for a distinction of possible resonance effects for 
anyone of the frequency components. A simple grid-dip meter has been used, however, in a 
nice experiment, for didactic purposes18. Since Co59 nuclei have a magnetic moment that 
undergoes Larmor precession in a given magnetic field, it is possible to stimulate this 
precession by applying an adequate radiofrequency. When a grid-dip meter provides this 
signal, one gets a small dip at 213.1 MHz, which is the resonance frequency for Co59, since 
cobalt powder provides a sufficiently strong response for detection by this simple method.  

C. Vedruccio called his electronic system a “bioscanner”. The Italian company Galileo 
Avionica produces this instrument and the associated software under the trade name 
TRIMprob (Tissue Resonance InterferoMeter Probe). The term interference should not be 
understood, however, in the traditional sense of a superposition of signals that can be 
antagonistic or cooperative. It has to be taken in the more general sense of a competitive 
interaction, since now it is clear that the available energy is shared in such a way that the 
amplitude of the stationary oscillations of the active oscillator are reduced, although the total 
energy is increased. The active and passive oscillators constitute a new entity, so that it is 
sufficient to observe the behaviour of one partner to get information about the other partner. 
This is analogous to the discovery of invisible extra-solar planets, by observing the motion of 
their stars, since they are both rotating about a common centre of mass. This follows from 
(linear) Newtonian mechanics, however, while the surprising properties of the bioscanner 
result from its non-linear properties.  

We hope that this phenomenon will really be able to contribute to early cancer detection, 
for the benefit of humanity.  
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